Centrale Maths 1 MP 2013
Questions du sujet 1. I.A.1) Exprimer $\frac{\partial \tilde{f}}{\partial r}(r,\theta)$ et $\frac{\partial \tilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r$, $\theta$, $\frac{\partial f}{\partial...
Questions du sujet 1. I.A.1) Exprimer $\frac{\partial \tilde{f}}{\partial r}(r,\theta)$ et $\frac{\partial \tilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r$, $\theta$, $\frac{\partial f}{\partial...
Questions du sujet 1. I.A.1) Dans chacun des deux cas suivants, montrer que f \ast g est définie et bornée...
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Montrer que J est une matrice de permutation. Calculer les valeurs propres réelles et complexes de...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. En observant que $V(f)$ et $-V^*(f)$ sont des primitives de $f$, montrer que pour tous $f,...
Questions du sujet 1. I.A.1) Quel est le domaine de définition $\mathcal{D}$ de la fonction $\Gamma$~? 2. I.A.2) Pour tout...