Mines Maths 1 PSI 2005
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Démontrer les inégalités suivantes : \[ \ln F (n) – \ln F (n – 1) \leq...
Questions du sujet 1. Déterminer l’ensemble de définition de la fonction $F$. Étudier les variations de la fonction $F$ et...
Questions du sujet 1. Soit $f \in C^0_\#,$ démontrer que la suite des $c_n(f)$ où $n \in \mathbb{Z},$ est bornée....
Questions du sujet 1. Soient $t_1$ et $t_2$ appartenant à $\mathcal{S}_n$, démontrer que $t_1+t_2 \in \mathcal{S}_n$. 2. Montrer que $t(\cdot):...
Questions du sujet 1. On fixe $x_0 > 0$. Soit $\varphi(\cdot, x_0) : [0, T(x_0)[ \to \mathbb{R}$ la solution maximale...
Questions du sujet 1. Soit $n \in \mathbb{N}^*$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Calculer $h_0$ et $h_1$ et établir pour tout entier $n$, pour tout réel $x$, l’identité suivante...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\max_{\lambda \in [0, 1]}...