
Mines Maths 2 PC 2010
Questions du sujet 1. Soit $n \in \mathbb{N}^*$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Soit $n \in \mathbb{N}^*$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Calculer $h_0$ et $h_1$ et établir pour tout entier $n$, pour tout réel $x$, l’identité suivante...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\max_{\lambda \in [0, 1]}...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. A Soit $E = \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ et $F = \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. Montrer que $F$ est un...
Questions du sujet 1. D\’emontrer que la suite des matrices $(U^n)_{n\in\mathbb{N}}$, o\`u $U^n$ est la matrice $U$ \’elev\’ee \`a la...
Questions du sujet 1. Quelle est la dimension de l’espace vectoriel $C$ ? 2. Démontrer que l’espace $C$ est une...
Questions du sujet 1. I-1. Exemples :\\ Déterminer toutes les solutions de l’équation différentielle E vérifiant les conditions C dans...
Questions du sujet 1. Soient $\lambda$ un réel dans l’intervalle $]0, 1[$, et $a$ et $b$ deux réels positifs. Montrer...