Mines Maths 1 PSI 2019
Questions du sujet 1. Soit $r \in \R^{*}_+$ et $p \in \N^*$. Justifier que la série entière $\sum_{n \geq 1}...
Questions du sujet 1. Soit $r \in \R^{*}_+$ et $p \in \N^*$. Justifier que la série entière $\sum_{n \geq 1}...
Questions du sujet 1. Soit $r \in \R^{*}_+$ et $p \in \N^*$. Justifier que la série entière $\sum_{n \geq 1}...
Questions du sujet 1. Démontrer que M est semblable à une matrice complexe triangulaire supérieure, établir que les coecients diagonaux...
Questions du sujet 1. Démontrer que M est semblable à une matrice complexe triangulaire supérieure, établir que les coecients diagonaux...
Questions du sujet 1. Soit $n \in \mathbb{N}^* :$ montrer que l’application $k \mapsto \binom{n}{k}$ est croissante sur $\{0, \cdots,...
Questions du sujet 1. Soit $n \in \mathbb{N}^* :$ montrer que l’application $k \mapsto \binom{n}{k}$ est croissante sur $\{0, \cdots,...
Questions du sujet 1. Montrer que pour tout \( \theta \in ]-\pi ; \pi[ \), la fonction \( f \)...
Questions du sujet 1. 1~Û Montrer que les matrices \( M \) et \( (m_{\varphi(i),\varphi(j)})_{1 \leq i,j \leq n} \)...
Questions du sujet 1. 1~Û Montrer que les matrices \( M \) et \( (m_{\varphi(i),\varphi(j)})_{1 \leq i,j \leq n} \)...
Questions du sujet 1. Rappeler le cardinal de $S_n$. En déduire que $R \geq 1$. 2. Pour $k \in [[0,...