Centrale Maths 2 PSI 2005
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant :\\ \og deux matrices de \(M_n(\mathbb{R})\) semblables...
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant :\\ \og deux matrices de \(M_n(\mathbb{R})\) semblables...
Questions du sujet 1. I.A.1) Cas $n = 2$.\\ Résoudre par cette méthode le système $(S_2)$.\\ On remarquera en particulier...
Questions du sujet 1. I.A.1) Soient $A$ et $B$ les deux matrices d’un même endomorphisme de $E$ rapporté à deux...
Questions du sujet 1. Question de cours. Démontrer que $M_{\mathcal{E},\mathcal{G}}(g \circ f) = M_{\mathcal{F},\mathcal{G}}(g) M_{\mathcal{E},\mathcal{F}}(f)$. 2. En déduire qu’il existe...
Questions du sujet 1. Montrer que $\mathrm{Toep}_n(\mathbb{C})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$. En donner une base et en préciser...
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R}~ G_x(t) = e^{ix \sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. I.A – Montrer que la fonction $t \mapsto e^{-t} t^{x-1}$ est intégrable sur $]0, +\infty[$ si,...
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...
Questions du sujet 1. I.A.1) Écrire une fonction suite qui prend en argument $x$ et l’entier $n$ et qui renvoie...
Questions du sujet 1. I.A – Écrire une séquence d’instructions permettant le calcul de $u_n$ pour $n$ donné (on ne...