
Centrale Maths 2 PSI 2010
Questions du sujet 1. I.A.1) Montrer que l’ensemble des similitudes non nulles est un sous-groupe de $\mathrm{GL}(E)$ pour la composition...
Questions du sujet 1. I.A.1) Montrer que l’ensemble des similitudes non nulles est un sous-groupe de $\mathrm{GL}(E)$ pour la composition...
Questions du sujet 1. I.A.1) Démontrer que 0 est valeur propre de AB si, et seulement si, \det(AB) = 0....
Questions du sujet 1. I.A – Si $A \in O_3(\mathbb{R})$, calculer $\|A\|$. 2. I.B – D\’emontrer que $O_3(\mathbb{R})$ est une...
Questions du sujet 1. I.A.1) Montrer que $p$ est une application linéaire. Déterminer la matrice de $p$ relativement aux bases...
Questions du sujet 1. I.A.1) D\’emontrer que si deux matrices de $E$ sont semblables, elles ont m\^{e}me trace et m\^{e}me...
Questions du sujet 1. I.A – Soit un sous-espace $F$ de $E$, stable par $f$. Montrer que si $x_0 \in...
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant :\\ \og deux matrices de \(M_n(\mathbb{R})\) semblables...
Questions du sujet 1. I.A.1) Cas $n = 2$.\\ Résoudre par cette méthode le système $(S_2)$.\\ On remarquera en particulier...
Questions du sujet 1. I.A.1) Soient $A$ et $B$ les deux matrices d’un même endomorphisme de $E$ rapporté à deux...
Questions du sujet 1. Question de cours. Démontrer que $M_{\mathcal{E},\mathcal{G}}(g \circ f) = M_{\mathcal{F},\mathcal{G}}(g) M_{\mathcal{E},\mathcal{F}}(f)$. 2. En déduire qu’il existe...