
CCINP Maths 1 PSI 2022
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Q1. On note $\Delta$ l’endomorphisme de $\mathbb{R}[X]$ défini par :\\ $\forall P \in \mathbb{R}[X], \Delta(P) =...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. I.1 Qu’affirme le théorème de Cauchy-Lipschitz linéaire quant à la structure de l’ensemble des solutions de...
Questions du sujet 1. Q1. Montrer que 1 est valeur propre de $A(\alpha, \beta)$ et determiner le sous-espace propre associé....
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1 Vérifier la formule donnant $L(f)$ pour $f$ définie sur $[0, 1]$ par $f (t) =...
Questions du sujet 1. I.1 Soient $V$ un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda$ un élément de $\mathbb{K}$. Montrer...