
CCINP Maths 1 MPI 2017
Questions du sujet 1. Justifier que les fonctions $f$ et $g$ sont différentiables en tout vecteur $(x, y) \in \mathbb{R}^2$...
Questions du sujet 1. Justifier que les fonctions $f$ et $g$ sont différentiables en tout vecteur $(x, y) \in \mathbb{R}^2$...
Questions du sujet 1. Justifier que la fonction $f$ est intégrable sur $]0,+\infty[$ puis, à l’aide d’un théorème d’intégration terme...
Questions du sujet 1. Q1. Démontrer que $\ell^\infty$ est un espace vectoriel réel et que l’application $u = (u_n)_{n\in\mathbb{N}^*} \longmapsto...
Questions du sujet 1. I.1. Soit $X$ une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda >...
Questions du sujet 1. I.1. Existe-t-il des solutions non nulles de l’équation (E) développables en série entière sur un intervalle...
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. (a) Démontrer que $||\cdot||$ définit une norme sur $E$. \\ De même, $||\cdot||’$ est une norme...
Questions du sujet 1. Démontrer que l’on définit un produit scalaire sur $E$ en posant, pour tout couple $(P, Q)$...
Questions du sujet 1. Justifier que la matrice $$ A = \begin{pmatrix} 4 & 2 & 2 \\ 6 &...
Questions du sujet 1. On munit $M_n(\mathbb{R})$ du produit scalaire canonique $(A|B) = \mathrm{trace}(A^tB)$, déterminer $D_n(\mathbb{R})^{\perp}$, l’orthogonal de $D_n(\mathbb{R})$ pour...