
Centrale Maths 1 MP 2015
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. I.A.1) Dans chacun des deux cas suivants, montrer que f \ast g est définie et bornée...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...
Questions du sujet 1. Justifier que pour tout $f \in L$, $\hat{f}$ est bien définie et continue sur $\mathbb{R}$.} 2....
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R} \quad G_x(t) = e^{ix\sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. Justifier que $\varphi$ appartient à $E_{cpm}$ et calculer sa transformée de Fourier $\mathcal{F}(\varphi)$. 2. I.B.1) Justifier...