
CCINP Maths 1 PSI 2020
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1 Vérifier la formule donnant $L(f)$ pour $f$ définie sur $[0, 1]$ par $f (t) =...
Questions du sujet 1. I.A.1) Dans chacun des deux cas suivants, montrer que f \ast g est définie et bornée...
Questions du sujet 1. Montrer l’inégalité d’interpolation (I.2) avec $C = 1$. 2. Soit $C \in ]0, 1[$. À l’aide...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...
Questions du sujet 1. Soit $F$ un sous-espace vectoriel de $E$ stable par $u$. Montrer que l’orthogonal $F^\perp$ de $F$...
Questions du sujet 1. Montrer \[ \Phi_{X_n}(t) = \prod_{k=1}^n \cos \left(\frac{t}{2^k}\right). \] 2. En déduire \[ \sin \left( \frac{t}{2^n} \right)...