
CCINP Maths 1 PSI 2011
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1/ Étudier la fonction $d$ ; en déduire qu’il existe un nombre réel $\alpha$ tel que,...
Questions du sujet 1. Justifier que les fonctions $f$ et $g$ sont différentiables en tout vecteur $(x, y) \in \mathbb{R}^2$...
Questions du sujet 1. Q1. Démontrer que $\ell^\infty$ est un espace vectoriel réel et que l’application $u = (u_n)_{n\in\mathbb{N}^*} \longmapsto...
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. I.A.1) Exprimer $\frac{\partial \tilde{f}}{\partial r}(r,\theta)$ et $\frac{\partial \tilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r$, $\theta$, $\frac{\partial f}{\partial...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...