
Centrale Maths 1 MP 2019
Questions du sujet 1. Montrer que $M$ et $M^{>}$ ont même spectre. 2. Montrer que $M^{>}$ est diagonalisable si et...
Questions du sujet 1. Montrer que $M$ et $M^{>}$ ont même spectre. 2. Montrer que $M^{>}$ est diagonalisable si et...
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. I.A.1) Montrer que l’application $A \mapsto N(A)$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{K})$. 2. I.A.2) Soit...
Questions du sujet 1. I.A – Montrer que, pour tout polynôme $P \in \mathbb{C}[X]$, l’application $f_P : A \mapsto P...
Questions du sujet 1. Soit $F$ un sous-espace vectoriel de $E$ stable par $u$. Montrer que l’orthogonal $F^\perp$ de $F$...
Questions du sujet 1. I.A.1) Déterminer $T_0$, $T_1$, $T_2$ et $T_3$. 2. I.A.2) En remarquant que pour tout réel $\theta$,...
Questions du sujet 1. I.A.1) Soit $u$ un endomorphisme de $\mathbb{R}^n$. Montrer que $u$ est autoadjoint défini positif si et...
Questions du sujet 1. Montrer que l’ensemble $J_x$ des polynômes $A$ tels que $A(\sigma)(x) = 0$ est un idéal de...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Montrer que J est une matrice de permutation. Calculer les valeurs propres réelles et complexes de...