Mines Maths 1 MP 2002
Questions du sujet 1. a. Démontrer que la fonction $E$ est développable en série entière sur la droite réelle $\mathbb{R}$....
Questions du sujet 1. a. Démontrer que la fonction $E$ est développable en série entière sur la droite réelle $\mathbb{R}$....
Questions du sujet 1. Montrer que pour toute variable aléatoire $X$ réelle à valeurs dans $\{1,\ldots,n\}$ et pour tout $m...
Questions du sujet 1. 1) On pose $j = \exp(2i\pi/3)$. Que vaut $j^4 + j^2 +1$ ? 2. 2) Proposer...
Questions du sujet 1. Soit $f \in C^1_K(\mathbb{R}^2, \mathbb{R})$. Montrer que si $f$ est radiale, il existe $F \in C^1_K(\mathbb{R}^+;...
Questions du sujet 1. Montrer que, pour tout $n \geq 1$, $P’_n$ admet exactement une racine $x_{n, k}$ dans chacun...
Questions du sujet 1. D\’emontrer que les fonctions complexes $f$ et $g_n$, $n \in \mathbb{N}$, d\’efinies dans le plan $\mathbb{R}^2$...
Questions du sujet 1. I-1. La suite des nombres premiers est illimitée :\\ Démontrer que la suite des nombres premiers...
Questions du sujet 1. I.A – Montrer que la fonction $t \rightarrow e^{-t} t^{x-1}$ est intégrable sur $]0, +\infty[$ si,...
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...
Questions du sujet 1. I.A.1) Écrire une fonction suite qui prend en argument $x$ et l’entier $n$ et qui renvoie...