Centrale Maths 1 MP 2009
Questions du sujet 1. I.1) Montrer qu’il existe un réel $c$ de l’intervalle $]1, 2[$ tel que $\Gamma'(c) = 0$....
Questions du sujet 1. I.1) Montrer qu’il existe un réel $c$ de l’intervalle $]1, 2[$ tel que $\Gamma'(c) = 0$....
Questions du sujet 1. I.A – Question de cours Soit $(u_n)_{n \in \mathbb{N}}$ une suite de fonctions uniformément convergente sur...
Questions du sujet 1. I.A.1) Montrer que $M$ est une forme linéaire sur $B$, que l’ensemble des fonctions moyennables est...
Questions du sujet 1. I.A – Préciser sur un dessin la signification géométrique du paramètre intervenant dans le paramétrage (1)....
Questions du sujet 1. I.A.1) Calculer, sous forme trigonométrique réelle, les coefficients de Fourier de la fonction $F$ $2\pi$-périodique impaire...
Questions du sujet 1. I.A.1) Montrer que A est positive si et seulement si toutes ses valeurs propres sont positives....
Questions du sujet 1. Soit $f \in E$. On suppose, dans cette question, que $f$ admet des moments de tous...
Questions du sujet 1. Soit $z = (z_n, n \geq 1)$ une suite réelle. Rappeler les définitions suivantes : \[...
Questions du sujet 1. Déterminer un éventuel prolongement par continuité de la fonction $\varphi$ en $0$. 2. Étudier les variations...
Questions du sujet 1. Calculer, pour toute valeur de l’entier strictement positif $n$, l’intégrale $I_n$. 2. Déterminer les constantes $A$,...