
Centrale Maths 1 PC 2005
Questions du sujet 1. I.A – Déterminer le développement en série entière de la fonction $I_0(x) = \int_0^x e^{-t^2/2} dt$....
Questions du sujet 1. I.A – Déterminer le développement en série entière de la fonction $I_0(x) = \int_0^x e^{-t^2/2} dt$....
Questions du sujet 1. A – Soit $h \in C, h \neq 0$. Justifier l’égalité $C = \text{Vect}(h) \oplus \text{Vect}(h)^\perp$...
Questions du sujet 1. I.A.1) Écrire la matrice de $M_n$ dans la base $(1, X, …, X^n)$ de $\mathbb{C}_n[X]$. 2....
Questions du sujet 1. Soit $f \in C^0_\#,$ démontrer que la suite des $c_n(f)$ où $n \in \mathbb{Z},$ est bornée....
Questions du sujet 1. Soient $t_1$ et $t_2$ appartenant à $\mathcal{S}_n$, démontrer que $t_1+t_2 \in \mathcal{S}_n$. 2. Montrer que $t(\cdot):...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\max_{\lambda \in [0, 1]}...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. Soient $\lambda$ un réel dans l’intervalle $]0, 1[$, et $a$ et $b$ deux réels positifs. Montrer...
Questions du sujet 1. Q1 Soient $f \in P(\mathbb{R})$ et $g \in C_0(\mathbb{R})$. Montrer que l’intégrale $\int_{-\infty}^{+\infty} f(t)g(x-t)dt$ converge pour...