
Mines Maths 2 PSI 2006
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. On considère $g : [0, +\infty[ \to \R$ définie par $g(x) = e^{-x}$. Montrer que $g$...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Démontrer les inégalités suivantes : \[ \ln F (n) – \ln F (n – 1) \leq...
Questions du sujet 1. Déterminer l’ensemble de définition de la fonction $F$. Étudier les variations de la fonction $F$ et...
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R}~ G_x(t) = e^{ix \sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. I.A – Montrer que la fonction $t \mapsto e^{-t} t^{x-1}$ est intégrable sur $]0, +\infty[$ si,...
Questions du sujet 1. I.A – Écrire une séquence d’instructions permettant le calcul de $u_n$ pour $n$ donné (on ne...
Questions du sujet 1. Quel lien y a-t-il entre une trajectoire $\gamma(t)$ du système et le champ $\Phi(X)$ ? 2....
Questions du sujet 1. I.A.1) Donner l’ensemble des solutions de (F0). 2. I.A.2) Dans cette question uniquement, on prend pour...