
Mines Maths 2 MP 2019
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer que si $f$ admet un point fixe $x$, celui-ci est unique. 2. Soit $x_0 \in...
Questions du sujet 1. Montrer que la fonction $\psi : u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est int\’egrable sur $I$. 2. D\’eterminer les...
Questions du sujet 1. Justifier que pour tout $f \in L$, $\hat{f}$ est bien définie et continue sur $\mathbb{R}$.} 2....
Questions du sujet 1. Montrer que $S_{n−1}$ est un compact de $\R^n$ et en déduire l’existence de :\\ $\|M\|_{op} =...
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1)\newline a) Étudier les variations de $\varphi$.\newline b) Tracer la représentation graphique de $\varphi$.\newline c) Montrer...
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R} \quad G_x(t) = e^{ix\sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. Justifier que $\varphi$ appartient à $E_{cpm}$ et calculer sa transformée de Fourier $\mathcal{F}(\varphi)$. 2. I.B.1) Justifier...