
Centrale Maths 1 MP 2010
Questions du sujet 1. I.A.1) Etablir que $\tau = \tau_0 \cup \tau_1$. 2. I.A.2) Représenter sur une même figure $\tau_0$,...
Questions du sujet 1. I.A.1) Etablir que $\tau = \tau_0 \cup \tau_1$. 2. I.A.2) Représenter sur une même figure $\tau_0$,...
Questions du sujet 1. I.1) Montrer qu’il existe un réel $c$ de l’intervalle $]1, 2[$ tel que $\Gamma'(c) = 0$....
Questions du sujet 1. I.A.1) Montrer que $M$ est une forme linéaire sur $B$, que l’ensemble des fonctions moyennables est...
Questions du sujet 1. I.A – Préciser sur un dessin la signification géométrique du paramètre intervenant dans le paramétrage (1)....
Questions du sujet 1. Pour $x \in \mathbb{R}$, montrer l’existence et donner la valeur des expressions suivantes : 2. On...
Questions du sujet 1. a) Vérifier que si une suite est à décroissance exponentielle alors elle est à décroissance rapide....
Questions du sujet 1. I.A.1) Montrer que A est positive si et seulement si toutes ses valeurs propres sont positives....
Questions du sujet 1. I.A.1) Calculer $u_n$ puis pour $k \in [[1, n-1]]$ exprimer $u_{n-k}$ en fonction de $u_n, u_{n-1},...
Questions du sujet 1. I.A.1) Montrer que est une norme sur .} 2. I.A.2) a) Montrer que , : ....
Questions du sujet 1. Établir pour tous $m_1, m_2, \cdots, m_n$ éléments de $M_{n,1}(\mathbb{R})$, l’inégalité $$ |\,\mathrm{per}(m_1, \cdots, m_n)| \leq...