
Centrale Maths 2 PSI 2005
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant :\\ \og deux matrices de \(M_n(\mathbb{R})\) semblables...
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant :\\ \og deux matrices de \(M_n(\mathbb{R})\) semblables...
Questions du sujet 1. I.A.1) Cas $n = 2$.\\ Résoudre par cette méthode le système $(S_2)$.\\ On remarquera en particulier...
Questions du sujet 1. I.A.1) Soient $A$ et $B$ les deux matrices d’un même endomorphisme de $E$ rapporté à deux...
Questions du sujet 1. Soit $n \in \mathbb{N}^{\ast}$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. Soit $E = \mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$. Déterminer toutes les parties vectorielles $F$ de $E$ stables par dérivation. 2....
Questions du sujet 1. D\’emontrer que la suite des matrices $(U_n)_{n\in\mathbb N}$, o\`u $U_n$ est la matrice $U$ \’elev\’ee \`a...
Questions du sujet 1. Question de cours. Démontrer que $M_{\mathcal{E},\mathcal{G}}(g \circ f) = M_{\mathcal{F},\mathcal{G}}(g) M_{\mathcal{E},\mathcal{F}}(f)$. 2. En déduire qu’il existe...
Questions du sujet 1. Montrer que $\mathrm{Toep}_n(\mathbb{C})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$. En donner une base et en préciser...
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...