
Centrale Maths 1 PC 2013
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R}~ G_x(t) = e^{ix \sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R}~ G_x(t) = e^{ix \sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. I – 1.1.\\ Justifier l’existence de l’intégrale $K = \int_{0}^{+\infty} \frac{1-\cos(t)}{t^2}\,dt$. 2. I – 1.2.\\ Pour...
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1.1 \textbf{Enoncer les propriet\’ es de la sph\` ere unit\’ e $\Omega_n$ ainsi que celles de...
Questions du sujet 1. I.A.1) Exprimer $\frac{\partial \tilde{f}}{\partial r}(r,\theta)$ et $\frac{\partial \tilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r$, $\theta$, $\frac{\partial f}{\partial...
Questions du sujet 1. I.A.1) Soit $u$ un endomorphisme de $\mathbb{R}^n$. Montrer que $u$ est autoadjoint défini positif si et...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que pour toute base orthonormée $(e_1,e_2,\ldots,e_n)$ de $\mathbb{R}^n$, on a la formule $\mathrm{tr}(A) = \sum_{i=1}^n...
Questions du sujet 1. I.A.1) Montrer que $A \in SO(2)$ si et seulement si il existe un réel $t$ tel...