
Centrale Maths 1 PC 2010
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...
Questions du sujet 1. I.A.1) Montrer que l’ensemble des similitudes non nulles est un sous-groupe de $GL(E)$ pour la composition...
Questions du sujet 1. Soit $n \in \mathbb{N}^*$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Q1 Soient $f \in P(\mathbb{R})$ et $g \in C_0(\mathbb{R})$. Montrer que l’intégrale $\int_{-\infty}^{+\infty} f(t)g(x-t)dt$ converge pour...
Questions du sujet 1. I.1.1. Justifier rapidement l’affirmation : $B$ définit un produit scalaire sur $\mathbb{R}_n[X]$ mais pas sur $C(\mathbb{R},...
Questions du sujet 1. I.1.1. Déterminer le polynôme caractéristique de $I$. En déduire les valeurs propres réelles ou complexes de...
Questions du sujet 1. I.A.1)\quad On suppose que $a$ est strictement positif.\\ On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ et on...
Questions du sujet 1. I.A.1) Montrer que \( D \) est stable par \( f \) si et seulement si...