

ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARIS, TÉLÉCOM PARIS, MINES PARIS, MINES SAINT-ÉTIENNE, MINES NANCY, IMT ATLANTIQUE, ENSAE PARIS, CHIMIE PARISTECH - PSL.

Concours Mines-Télécom, Concours Centrale-Supélec (Cycle International).

CONCOURS 2024

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice et de tout dispositif électronique est interdit.

L'énoncé de cette épreuve comporte 5 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 3.0 France. Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.

Étude de marche aléatoire

Notations

On rappelle l'expression des coefficients binomiaux. Lorsque k et n sont deux entiers, on pose :

$$\binom{n}{k} = \begin{cases} \frac{n!}{k! \ (n-k)!}, \text{ si } 0 \leqslant k \leqslant n \\ 0, \text{ sinon} \end{cases}.$$

On pourra utiliser sans démonstration l'équivalent de Stirling, valable lorsque l'entier naturel n tend vers $+\infty$:

$$n! \underset{n \to +\infty}{\sim} \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n}.$$

1 Une propriété sur les sommes de Riemann

Dans toute la suite, pour tous réels a < b, on note $\mathcal{D}_{a,b}$ l'ensemble des fonctions f: $[a, b] \longrightarrow \mathbf{R}$ continues sur l'intervalle [a, b], intégrables sur [a, b] et vérifiant de plus :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \frac{1}{b-a} \int_a^b f(t) dt.$$

- 1 ▷ Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction continue. Démontrer que la restriction g de la fonction f à l'intervalle [a,b] appartient à l'ensemble $\mathcal{D}_{a,b}$.
- $\mathbf{2} \triangleright \text{En posant pour tout entier } k \geqslant 1, \ a_k = \frac{1}{k} \frac{1}{2^{k+1}} \text{ et } b_k = \frac{1}{k} + \frac{1}{2^{k+1}}, \text{ montrer que l'on peut choisir un entier } k_0 \geqslant 1 \text{ tel que :}$

$$\forall k \geqslant k_0, \ b_{k+1} < a_k.$$

En déduire que la fonction $f:]0,1[\longrightarrow \mathbf{R}$ définie par :

$$f:t\longmapsto \begin{cases} k^2\cdot 2^{k+1}\cdot (t-a_k), \text{ si il existe un entier } k\geqslant k_0 \text{ tel que } t\in \left[a_k,a_k+\frac{1}{2^{k+1}}\right]\\ k^2\cdot 2^{k+1}\cdot (b_k-t), \text{ si il existe un entier } k\geqslant k_0 \text{ tel que } t\in \left[a_k+\frac{1}{2^{k+1}},b_k\right]\\ 0, \text{ sinon} \end{cases}$$

est une fonction bien définie et continue sur]0,1[, intégrable sur]0,1[et que cette fonction f n'appartient pas à l'ensemble $\mathcal{D}_{0,1}$.

Dans la suite, on définit la fonction :

$$h: \begin{vmatrix}]0,1[& \longrightarrow & \mathbf{R} \\ t & \longmapsto & \frac{1}{\sqrt{t(1-t)}} \end{vmatrix}.$$

- $\mathbf{3} \triangleright \text{Montrer que la fonction } \varphi: t \longmapsto \frac{1}{\sqrt{t}} \text{ est intégrable sur }]0,1[, \text{ puis montrer que la fonction } \varphi \text{ appartient à } \mathscr{D}_{0,1}.$
- $\mathbf{4} \vartriangleright \text{On note } \tilde{h} \text{ la restriction de la fonction } h \text{ à l'intervalle } \left]0, \frac{1}{2}\right]. \text{ Vérifier que la fonction } \tilde{h} \text{ est décroissante sur } \left]0, \frac{1}{2}\right[, \text{ puis montrer que la fonction } \tilde{h} \text{ appartient à } \mathscr{D}_{0,\frac{1}{2}}.$
- $\mathbf{5} \triangleright \text{Montrer que la fonction } h \text{ est intégrable sur } [0,1[\text{ et que :}$

$$\int_0^1 h(t) \ dt = 2 \int_0^{\frac{1}{2}} \tilde{h}(t) \ dt.$$

 $6 \triangleright$ Prouver alors que :

$$\lim_{n \to +\infty} \sum_{k=1}^{2n-1} \frac{1}{2n} h\left(\frac{k}{2n}\right) = \int_0^1 h(t) \ dt.$$

 $7 \triangleright Montrer que :$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2n+1} h\left(\frac{k}{2n+1}\right) = \int_{0}^{\frac{1}{2}} h(t) dt.$$

En déduire que :

$$\lim_{n \to +\infty} \sum_{k=1}^{2n} \frac{1}{2n+1} h\left(\frac{k}{2n+1}\right) = \int_0^1 h(t) \ dt.$$

- $\mathbf{8} \triangleright \text{Déduire des questions précédentes que la fonction } h \text{ appartient à } \mathcal{D}_{0,1}.$
- $9 \triangleright Montrer que :$

$$\int_0^1 h(t) \ dt = \pi.$$

10 ▷ Montrer que lorsque n tend vers $+\infty$, on a un équivalent de la forme :

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sum_{n \to +\infty} \lambda \sqrt{n},$$

où la constante λ est à préciser.

 $11 \triangleright \text{En déduire la limite}$:

$$\lim_{n \to +\infty} \sum_{i=1}^{n-1} \frac{1}{\sqrt{i(n-i)}}.$$

On considère une suite $(\varepsilon_n)_{n\in\mathbb{N}^*}$ de nombres réels strictement supérieurs à -1, convergente de limite nulle.

 $12 \triangleright Montrer que :$

$$\lim_{n \to +\infty} \sum_{i=1}^{n-1} \frac{|\varepsilon_i|}{\sqrt{i(n-i)}} = 0.$$

13 ⊳ En déduire que :

$$\lim_{n \to +\infty} \sum_{i=1}^{n-1} \frac{1}{\sqrt{i(n-i)}} \cdot \left(\frac{(1+\varepsilon_i)(1+\varepsilon_{n-i})}{1+\varepsilon_n} - 1 \right) = 0.$$

2 Une étude de marche aléatoire

Dans cette partie, on considère une suite de variables aléatoires $\left(X_n:\Omega\longrightarrow\{-1,1\}\right)_{n\in\mathbf{N}^*}$ définies sur un même espace probabilisé $(\Omega,\mathscr{A},\mathbf{P})$ et à valeurs dans l'ensemble à deux éléments $\{-1,1\}$, ces variables aléatoires étant mutuellement indépendantes et centrées. Pour tout $n\in\mathbf{N}^*$, on note :

$$S_n = \sum_{k=1}^n X_k.$$

14 ▷ Montrer que pour tout $n \in \mathbf{N}^*$, la variable aléatoire $\frac{1+X_n}{2}$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$.

Dans la suite, on fixe l'entier $n \ge 1$. On appelle chemin, tout 2n-uplet $\gamma = (\varepsilon_1, \dots, \varepsilon_{2n})$ dont les composantes ε_k valent -1 ou 1.

Si $\gamma=(\varepsilon_1,\cdots,\varepsilon_{2n})$ est un chemin, on appelle indice d'égalité, tout entier $k\in [\![1,2n]\!]$ tel que $\sum_{i=1}^k \varepsilon_i=0$. On remarquera alors qu'un entier k est un indice d'égalité si et seulement si le k-uplet $(\varepsilon_1,\cdots,\varepsilon_k)$ comporte autant de composantes égales à 1 que de composantes égales à -1.

On note $N_n: \Omega \longrightarrow \mathbf{N}$ la variable aléatoire qui à tout élément ω de l'univers Ω compte le nombre d'indices d'égalité du chemin $(X_1(\omega), \cdots, X_{2n}(\omega))$.

On note pour tout entier i entre 1 et n, l'événement A_i défini par

$$A_i = \left\{ \omega, \text{ 2i est un indice d'égalité de } \left(X_1(\omega), \cdots, X_{2n}(\omega) \right) \right\}.$$

15 ▷ Calculer la probabilité $P(A_i)$, pour tout entier i entre 1 et n.

16 ▷ Soit $\ell \in \mathbf{Z}$ un entier et $n \ge 1$ un autre entier. En distinguant le cas où l'entier $\ell - n$ est pair ou impair, calculer $\mathbf{P}(S_n = \ell)$.

On admet sans démonstration le résultat suivant :

Théorème 1 Soit $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ deux suites de nombres réels non nuls telles que $a_n = o(b_n)$ au voisinage de $+\infty$ et la série $\sum_n |b_n|$ est divergente. Alors :

$$\sum_{k=1}^{n} a_k = o\left(\sum_{k=1}^{n} |b_k|\right) \text{ au voisinage } de + \infty.$$

17 ▷ Soit $(c_n)_{n \in \mathbb{N}^*}$ et $(d_n)_{n \in \mathbb{N}^*}$ deux suites de nombres réels strictement positifs telles que : $c_n \underset{n \to +\infty}{\sim} d_n$ et la série $\sum_n c_n$ diverge.

En utilisant le résultat admis dans l'énoncé, montrer que la série $\sum d_n$ est divergente et que :

$$\sum_{k=1}^{n} c_k \underset{n \to +\infty}{\sim} \sum_{k=1}^{n} d_k.$$

 $\mathbf{18} \, \triangleright \, \text{Montrer que la variable aléatoire} \, N_n$ admet une espérance finie et que son espérance $\mathbb{E}(N_n)$ est égale à :

$$\mathbb{E}(N_n) = \sum_{i=1}^n \frac{\binom{2i}{i}}{4^i}.$$

[indication : on pourra exprimer la variable N_n à l'aide de fonctions indicatrices associées aux événements A_i .]

19 ⊳ En déduire l'équivalent :

$$\mathbb{E}(N_n) \underset{n \to +\infty}{\sim} \frac{2}{\sqrt{\pi}} \sqrt{n}.$$

Dans une urne contenant n boules blanches et n boules noires, on procède à des tirages de boules sans remise, jusqu'à vider complètement l'urne. Les tirages sont équiprobables à chaque pioche.

Pour tout entier k entre 1 et 2n, on dit que l'entier k est un indice d'égalité si dans l'expérience de pioche précédemment décrite, il reste autant de boules noires que de boules blanches dans l'urne après avoir pioché les k premières boules sans remise. On remarque que l'entier 2n est toujours un indice d'égalité.

On note M_n , la variable aléatoire comptant le nombre aléatoire d'indices d'égalité k entre 1 et 2n.

20 \triangleright En utilisant par exemple les événements B_i : « l'entier i est un indice d'égalité », montrer que la variable M_n admet une espérance finie égale à :

$$\mathbb{E}(M_n) = \sum_{i=0}^{n-1} \frac{\binom{2i}{i} \cdot \binom{2n-2i}{n-i}}{\binom{2n}{n}}.$$

 $21 \triangleright \text{En déduire l'équivalent}$:

$$\mathbb{E}(M_n) \xrightarrow[n \to +\infty]{} \sqrt{\pi \ n}.$$

FIN DU PROBLÈME