

ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARIS, TÉLÉCOM PARIS, MINES PARIS, MINES SAINT-ÉTIENNE, MINES NANCY, IMT ATLANTIQUE, ENSAE PARIS, CHIMIE PARISTECH - PSL.

Concours Mines-Télécom, Concours Centrale-Supélec (Cycle International).

CONCOURS 2024

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice et de tout dispositif électronique est interdit.

L'énoncé de cette épreuve comporte 4 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 3.0 France. Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.

Inégalité de log-Sobolev pour la gaussienne

Notations et résultats admis

- Soit la fonction φ définie sur \mathbf{R} par $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
- Pour $k \in \mathbb{N} \cup \{\infty\}$, on pose $C^k(\mathbb{R})$ l'ensemble des fonctions de classe C^k sur \mathbb{R} à valeurs dans \mathbb{R} .
- On note $CL\left(\mathbf{R}\right)$ l'ensemble des fonctions de \mathbf{R} dans \mathbf{R} à croissance lente, c'est-àdire :

$$CL\left(\mathbf{R}\right) = \left\{f : \mathbf{R} \to \mathbf{R}, \ \exists C > 0, \ \exists k \in \mathbf{N} \text{ tel que pour tout } x \in \mathbf{R}, \ |f\left(x\right)| \le C\left(1 + |x|^{k}\right)\right\}.$$

- On note $L^1(\varphi) = \{ f \in C^0(\mathbf{R}), f\varphi \text{ intégrable sur } \mathbf{R} \}.$
- Soit $t \in \mathbf{R}_+$. Pour une fonction $f : \mathbf{R} \to \mathbf{R}$, on définit si cela est possible la fonction $P_t(f)$ par :

$$\forall x \in \mathbf{R}, \quad P_t(f)(x) = \int_{-\infty}^{+\infty} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi(y) \, dy.$$

— Pour f deux fois dérivable sur \mathbf{R} , on définit sur \mathbf{R} la fonction L(f) par :

$$\forall x \in \mathbf{R}, \quad L(f)(x) = f''(x) - xf'(x).$$

- Une fonction $P: \mathbf{R} \to \mathbf{R}$ est dite fonction polynomiale en |x| s'il existe $d \in \mathbf{N}$ et des réels a_0, \ldots, a_d tels que pour tout $x \in \mathbf{R}$, $P(x) = \sum_{k=0}^d a_k |x|^k$.
- Soient $f: \mathbf{R}_+ \to \mathbf{R}$ une fonction et $\ell \in \mathbf{R} \cup \{\pm \infty\}$. On admet que $\lim_{t \to +\infty} f(t) = \ell$ si, et seulement si, pour toute suite $(t_n)_{n \in \mathbf{N}}$ de réels positifs telle que $\lim_{n \to +\infty} t_n = +\infty$, on a $\lim_{n \to +\infty} f(t_n) = \ell$.

Partie 1 : Résultats préliminaires

1 \triangleright Montrer que toute fonction majorée en valeur absolue par une fonction polynomiale en |x| est à croissance lente.

 $\mathbf{2} \triangleright \text{Montrer que } C^{0}\left(\mathbf{R}\right) \cap CL\left(\mathbf{R}\right) \subset L^{1}\left(\varphi\right).$

On admet dans toute la suite du problème que $\int_{-\infty}^{+\infty} \varphi(t) dt = 1$.

- $\mathbf{3}$ ▷ Montrer que $CL(\mathbf{R})$ est un espace vectoriel. Montrer aussi que $CL(\mathbf{R})$ est stable par produit.
- **4** ▷ Soit $t \in \mathbf{R}_{+}$. Vérifier que la fonction $P_{t}(f)$ est bien définie pour $f \in C^{0}(\mathbf{R}) \cap CL(\mathbf{R})$ et vérifier que P_{t} est linéaire sur $C^{0}(\mathbf{R}) \cap CL(\mathbf{R})$.
- **5** ▷ Montrer que pour tout $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$ et tout $x \in \mathbf{R}$,

$$\lim_{t \to +\infty} P_t(f)(x) = \int_{-\infty}^{+\infty} f(y) \varphi(y) dy.$$

6 ⊳ Soit $t \in \mathbf{R}_+$. Montrer que si $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$, alors $P_t(f) \in C^0(\mathbf{R})$. Montrer aussi que $P_t(f)$ est majorée en valeur absolue par une fonction polynomiale en |x| indépendante de t. En déduire que $P_t(f) \in L^1(\varphi)$.

On admettra dans toute la suite du problème que, si $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$, alors

$$\forall t \in \mathbf{R}_{+}, \quad \int_{-\infty}^{+\infty} P_{t}(f)(x) \varphi(x) dx = \int_{-\infty}^{+\infty} f(x) \varphi(x) dx.$$

7 ▷ Montrer que pour toutes fonctions $f, g \in C^2(\mathbf{R})$ telles que les fonctions f, f', f'' et g soient à croissance lente, on a

$$\int_{-\infty}^{+\infty} L(f)(x) g(x) \varphi(x) dx = -\int_{-\infty}^{+\infty} f'(x) g'(x) \varphi(x) dx.$$

Partie 2 : Dérivée de $P_t(f)$

Pour $f: \mathbf{R} \to \mathbf{R}$ et $x \in \mathbf{R}$, on note, si cela a un sens, $\frac{\partial P_t(f)(x)}{\partial t}$ la dérivée de la fonction $t \in \mathbf{R}_+ \mapsto P_t(f)(x)$.

Pour $f: \mathbf{R} \to \mathbf{R}$ et $t \in \mathbf{R}_+$ fixé, on note, si cela a un sens, $P_t(f)'$ (resp. $P_t(f)''$) la dérivée de $x \in \mathbf{R} \mapsto P_t(f)(x)$ (resp. la dérivée seconde de $x \in \mathbf{R} \mapsto P_t(f)(x)$).

8 \triangleright Montrer que si $f \in C^1(\mathbf{R}) \cap CL(\mathbf{R})$ telle que $f' \in CL(\mathbf{R})$ et $x \in \mathbf{R}$, alors $t \in \mathbf{R}_+ \mapsto P_t(f)(x)$ est de classe C^1 sur \mathbf{R}_+^* et montrer que pour tout t > 0, on a

$$\frac{\partial P_t\left(f\right)\left(x\right)}{\partial t} = \int_{-\infty}^{+\infty} \left(-xe^{-t} + \frac{e^{-2t}}{\sqrt{1 - e^{-2t}}}y\right) f'\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi\left(y\right) dy.$$

9 ▷ Soient $f \in C^2(\mathbf{R}) \cap CL(\mathbf{R})$ telle que f' et f'' soient à croissance lente et $t \in \mathbf{R}_+$. Montrer que $x \in \mathbf{R} \mapsto P_t(f)(x)$ est de classe C^2 sur \mathbf{R} . Montrer aussi que

$$\forall x \in \mathbf{R}, \quad P_t(f)'(x) = e^{-t} \int_{-\infty}^{+\infty} f'\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi(y) dy$$

et

$$\forall x \in \mathbf{R}, \quad P_t(f)''(x) = e^{-2t} \int_{-\infty}^{+\infty} f''\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi(y) \, dy.$$

10 ▷ En déduire que pour $f \in C^2(\mathbf{R}) \cap CL(\mathbf{R})$ telle que f' et f'' soient à croissance lente, on a

$$\forall t \in \mathbf{R}_{+}^{*}, \ \forall x \in \mathbf{R}, \quad \frac{\partial P_{t}(f)(x)}{\partial t} = L(P_{t}(f))(x).$$

Partie 3 : Inégalité de log-Sobolev pour la gaussienne

Pour $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$ à valeurs strictement positives telle que

$$\int_{-\infty}^{+\infty} f(x) \varphi(x) dx = 1,$$

on définit l'entropie de f par rapport à φ par :

$$\operatorname{Ent}_{\varphi}(f) = \int_{-\infty}^{+\infty} \ln(f(x)) f(x) \varphi(x) dx.$$

Dans la suite de cette partie, f est un élément de $C^2(\mathbf{R})$ à valeurs strictement positives tel que les fonctions f, f', f'' et $\frac{f'^2}{f}$ soient à croissance lente. On suppose aussi que $\int_{-\infty}^{+\infty} f(x) \, \varphi(x) \, \mathrm{d}x = 1$.

11 ▷ Étudier les variations de la fonction $t \mapsto t \ln(t)$ sur \mathbf{R}_{+}^{*} . On vérifiera que l'on peut prolonger par continuité la fonction en 0.

12 ▷ Justifier que la quantité $\operatorname{Ent}_{\varphi}(g)$ est bien définie pour tout $g \in C^{0}(\mathbf{R}) \cap CL(\mathbf{R})$ à valeurs strictement positives telle que $\int_{-\infty}^{+\infty} g(x) \varphi(x) dx = 1$.

Indication: On pourra utiliser la question 11.

- **13** ▷ Pour $t \in \mathbf{R}_{+}$, on pose $S(t) = \operatorname{Ent}_{\varphi}(P_{t}(f))$. Justifier que S(t) est bien définie.
- 14 ▷ Montrer que S est continue sur \mathbf{R}_+ .

Indication : On pourra au préalable montrer que, si $x \in \mathbf{R}$, $t \mapsto P_t(f)(x)$ est continue sur \mathbf{R}_+ .

- **15** \triangleright Vérifier que l'on a $S\left(0\right)=\operatorname{Ent}_{\varphi}\left(f\right)$ et $\lim_{t\to+\infty}S\left(t\right)=0.$
- 16 ▷ On admet que S est de classe C^1 sur \mathbf{R}_+^* et que

$$\forall t \in \mathbf{R}_{+}^{*}, \quad S'(t) = \int_{-\infty}^{+\infty} \frac{\partial P_{t}(f)(x)}{\partial t} \left(1 + \ln \left(P_{t}(f)(x)\right)\right) \varphi(x) \, \mathrm{d}x.$$

Montrer que

$$\forall t \in \mathbf{R}_{+}^{*}, \quad S'(t) = \int_{-\infty}^{+\infty} L(P_{t}(f))(x) (1 + \ln(P_{t}(f)(x))) \varphi(x) dx.$$

17 ▷ En admettant que le résultat de la question 7 est valable pour les fonctions $P_t(f)$ et $1 + \ln(P_t(f))$, montrer que

$$\forall t \in \mathbf{R}_{+}^{*}, \quad -S'(t) = e^{-2t} \int_{-\infty}^{+\infty} \frac{P_{t}(f')(x)^{2}}{P_{t}(f)(x)} \varphi(x) dx.$$

18 ⊳ En utilisant l'inégalité de Cauchy-Schwarz, montrer que

$$\forall t \in \mathbf{R}_{+}^{*}, \quad -S'(t) \leq e^{-2t} \int_{-\infty}^{+\infty} P_{t}\left(\frac{f'^{2}}{f}\right)(x) \varphi(x) dx.$$

19 ⊳ En déduire que l'on a :

$$\forall t \in \mathbf{R}_{+}^{*}, \quad -S'(t) \le e^{-2t} \int_{-\infty}^{+\infty} \frac{f'^{2}(x)}{f(x)} \varphi(x) dx.$$

20 ⊳ Établir l'inégalité suivante

$$\operatorname{Ent}_{\varphi}(f) \leq \frac{1}{2} \int_{-\infty}^{+\infty} \frac{f'^{2}(x)}{f(x)} \varphi(x) dx.$$

Fin du problème