

# Mathématiques 2

TSI C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

## Fonctions génératrices et applications

### I Cas d'un univers fini

On note  $\mathbb{R}[T]$  l'ensemble des polynômes à coefficients réels de la variable réelle t. Soit X une variable aléatoire définie sur un espace probabilisé fini  $(\Omega, \mathcal{P}(\Omega), P)$  et à valeurs dans  $\mathbb{N}$ . On définit sa fonction génératrice  $G_X$  par :

$$G_X: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R}[T] \\ t \mapsto E(t^X) \end{matrix} \right.$$

#### I.A - Définition et propriétés

Soit  $n \in \mathbb{N}^*$ . On note  $X(\Omega) = \{x_1, ..., x_n\} \subset \mathbb{N}$ .

**Q 1.** Montrer que :

$$\forall t \in \mathbb{R}, \quad G_X(t) = \sum_{k=1}^n P(X = x_k) t^{x_k}$$

et en déduire que  $G_X$  est fonction polynomiale en t.

**Q 2.** Calculer  $G_X(1)$ .

**Q 3.** Calculer  $G_X$  sous la forme la plus factorisée possible si la variable aléatoire X suit une loi de Bernouilli de paramètre  $p \in ]0,1[$ .

**Q 4.** Calculer  $G_X$  sous la forme la plus factorisée possible si la variable aléatoire X suit une loi uniforme sur [1, n].

**Q 5.** Calculer  $G_X$  sous la forme la plus factorisée possible si la variable aléatoire X suit une loi binomiale de paramètre  $p \in ]0,1[$ .

**Q 6.** Montrer que si X et Y sont deux variables aléatoires indépendantes définies sur le même espace probabilisé fini  $(\Omega, \mathcal{P}(\Omega), P)$  et à valeurs dans  $\mathbb N$  alors  $G_{X+Y} = G_X G_Y$ .

#### $I.B-\ Une\ application$

On jette deux dés à six faces. On note X et Y les variables aléatoires donnant la valeur de la face obtenue par le premier et le second dé. On suppose que ces deux variables aléatoires sont indépendantes. On note Z = X + Y la variable aléatoire donnant la somme des deux faces obtenues.

 $\mathbf{Q}$  7. Préciser l'univers  $\Omega$  modélisant cette expérience aléatoire.

**Q 8.** Calculer  $Z(\Omega)$ .

On suppose qu'il est possible de piper les deux dés de sorte que la variable aléatoire Z suive une loi uniforme sur [2, 12].

On note alors pour  $k \in [1, 6]$ ,  $\alpha_k = P(X = k)$  et  $\beta_k = P(Y = k)$ .

**Q 9.** Montrer que la fonction génératrice de Z est de la forme  $G_Z(t) = t^2 P(t)$  avec P un polynôme de degré 10 à coefficients réels.

**Q 10.** Proposer une autre écriture de la fonction génératrice de Z de la forme  $G_Z(t) = t^2 Q(t) R(t)$  avec  $Q \in \mathbb{R}_5[T]$  et  $R \in \mathbb{R}_5[T]$ .

**Q 11.** Montrer que P = QR puis que Q et R sont de degré 5.

**Q 12.** Résoudre dans  $\mathbb{C}$  l'équation  $\sum_{k=0}^{10} z^k = 0$  et montrer qu'elle n'admet aucune solution réelle.

 $\mathbf{Q}$  13. Prouver que Q et R ont chacun au moins une racines réelles.

**Q 14.** Aboutir à une contradiction. Conclure.

#### II Cas d'un univers infini

#### II.A - Définition et propriétés

On considère un univers  $\Omega$  dénombrable muni d'une probabilité  $P:\mathcal{P}(\Omega)\to [0,1]$ . Soit X une variable aléatoire définie sur  $\Omega$  et à valeurs dans  $\mathbb N$ . On définit sa fonction génératrice  $G_X$  par :

$$G_X(t) = E(t^X) = \sum_{k=0}^{+\infty} P(X=k) t^k$$

pour les rééls  $t \in \mathbb{R}$  tels que la série  $\sum_{k \geqslant 0} P(X=k) t^k$  converge (ce qui revient à dire par le théorème de transfert que  $t^X$  admet une espérance finie).

 ${f Q}$  15. Montrer que la série entière définissant la fonction génératrice de X a un rayon de convergence R supérieur ou égal à 1.

**Q 16.** Montrer que  $G_X$  est de classe  $\mathcal{C}^{\infty}$  sur ]-R, R[.

**Q 17.** Montrer que si R>1 alors  $G_X$  est deux fois dérivable en 1, puis que X admet une espérance et une variance données par :

$$E(X) = G'(1), \quad E(X(X-1)) = G''_{Y}(1), \text{ et } V(X) = G''_{Y}(1) + G'_{Y}(1) - (G'_{Y}(1))^{2}.$$

Un exemple:

**Q 18.** Soit  $X \hookrightarrow \mathcal{P}(\lambda)$  une variable aléatoire qui suit un loi de Poisson de paramètre  $\lambda > 0$ :

$$\forall k \in \mathbb{N}, \quad P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Montrer que la fonction génératrice  $G_X$  de cette loi a un rayon de convergence égal à  $R=+\infty$  et pour tout  $t\in\mathbb{R}$ , on a :

$$G_X(t) = \sum_{k=0}^{+\infty} e^{-\lambda} \frac{t^k \lambda^k}{k!} = e^{-\lambda} e^{\lambda t}.$$

 ${f Q}$  19. En déduire que X admet une espérance et une variance finie puis l'expression de cette espérance et de cette variance.

#### II.B - Première application : une loi construite à partir de la loi de Poisson

Soit X une variable aléatoire réelle suivant une loi de Poisson de paramètre  $\lambda > 0$ . Soit Y la variable aléatoire réelle définie par :

$$\begin{cases} X/2 & \text{si } X \text{ est paire} \\ 0 & \text{sinon.} \end{cases}$$

$$\mathbf{Q} \ \mathbf{20.} \quad \text{Montrer que } P(Y=0) = \mathrm{e}^{-\lambda} \left(1 + f(\lambda)\right) \text{ avec } f(\lambda) = \sum_{k=0}^{+\infty} \frac{\lambda^{2k+1}}{(2k+1)!}.$$

- **Q 21.** Montrer que  $\forall \lambda > 0$ ,  $f(\lambda) = \frac{e^{\lambda} e^{-\lambda}}{2}$ .
- $\mathbf{Q}$  **22.** Déterminer la loi de Y.
- $\mathbf{Q}$  23. Calculer l'espérance de Y.

#### II.C - Seconde application: une loi produit

Soit  $\Omega$  un univers dénombrable muni d'une probabilité  $P:\Omega\to[0,1]$ . On considère deux variables aléatoires X et Y définies sur  $\Omega$  telles que :

- $-X \hookrightarrow \mathcal{P}(\lambda) \text{ avec } \lambda > 0$ ;
- $-Y \hookrightarrow \mathcal{B}(p) \text{ avec } p \in [0,1[$ ;
- X et Y sont indépendantes, ce qui signifie que pour tout  $n \in \mathbb{N}$  et tout  $k \in \{0,1\}$ ,  $P((X=n) \cap (Y=k)) = P(X=n)P(Y=k)$ .

On pose Z = XY et on note  $G_X$ ,  $G_Y$ ,  $G_Z$  les fonctions génératrices de ces trois variables aléatoires.

- **Q 24.** Montrer que  $P(Z = 0) = q + pe^{-\lambda}$  où q = 1 p.
- **Q 25.** En déduire que  $G_Z = G_Y \circ G_X$ .
- $\mathbf{Q}$  26. Puis calculer l'espérance et la variance de Z.

