

Mathématiques 1

PSI C

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrice autorisée

Notations

- On note $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{R} .
- Tout au long du sujet, un polynôme de $\mathbb{R}[X]$ sera identifié à sa fonction polynomiale.
- Une fonction de \mathbb{R} dans \mathbb{R} continue est dite intégrable sur \mathbb{R} si et seulement si $\int_{-\infty}^{+\infty} |f(x)| dx$ converge.
- Pour une famille de polynômes $(P_n)_{n\in\mathbb{N}}$, on appelle $\text{vect}(\mathbf{P_n},\mathbf{n}\in\mathbb{N})$ l'espace vectoriel engendré par cette famille, c'est à dire :

$$vect(P_n, n \in \mathbb{N}) = \left\{g: \mathbb{R} \rightarrow \mathbb{R}, \exists N \in \mathbb{N}, \exists (a_0, ..., a_N) \in \mathbb{R}^{N+1}, g = \sum_{k=0}^N a_k P_k \right\}$$

Le sujet illustre des applications du calcul de l'intégrale de Gauss dans différents domaines.

La partie I est consacrée au calcul de cette intégrale.

La partie II est consacrée à la résolution d'une équation différentielle du second ordre à l'aide des séries entières. Elle utilise le résultat final de la partie I. Elle est totalement indépendantes des deux parties suivantes.

La partie III est consacrée à l'étude d'un endomorphisme autoadjoint de $\mathbb{R}[X]$ et d'une suite de polynômes orthogonaux associés à cet endomorphisme. Elle est indépendante de la partie II.

La partie IV est consacrée à montrer des propriétés sur la famille de polynômes construite à la partie III. Le but est d'établir que c'est une famille totale d'un espace préhilbertien. Ce résultat est en fait un résultat général dans la théorie des espaces de Hilbert.

I Partie I : Intégrale de Wallis et Intégrale de Gauss

$$\textbf{\textit{I.A}} \ - \qquad \text{On d\'efinit } \forall n \in \mathbb{N}, \, W_n = \int\limits_0^{\frac{\pi}{2}} \cos^n(t) \, dt.$$

- **Q 1.** Étudier la monotonie de la suite (W_n) .
- $\mathbf{Q} \ \mathbf{2.} \qquad \text{Montrer que } \forall n \in \mathbb{N}, \ (n+2)W_{n+2} = (n+1)W_n.$
- **Q 3.** Montrer que $\forall n \in \mathbb{N}, (n+1)W_nW_{n+1} = \frac{\pi}{2}$.
- **Q 4.** En déduire que $W_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

$$I.B$$
 - On note $I = \int_{0}^{+\infty} e^{-x^2} dx$ et $J = \int_{-\infty}^{+\infty} e^{-x^2} dx$

- \mathbf{Q} 5. Justifier l'existence de I.
- **Q 6.** Montrer que $\lim_{n\to+\infty} \int_{0}^{\sqrt{n}} \left(1-\frac{x^2}{n}\right)^n dx = I$.

Q 7. En utilisant le changement de variable $x = \sqrt{n} \sin u$, après avoir justifié qu'il est licite, montrer que pour tout $n \ge 1$:

$$\int\limits_{0}^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx = \sqrt{n}W_{2n+1}$$

 \mathbf{Q} 8. En déduire la valeur de I puis de J.

II Partie II: Autour d'une équation différentielle

On considère l'équation différentielle définie sur $\mathbb{R}[X]$ par

$$xy'' + y' + xy = 0 \tag{II.1}$$

II.A -

- **Q 9.** Déterminer les solutions développables en série entière de II.1 sur $\mathbb{R}[X]$.
- **Q 10.** Démontrer qu'il existe une unique solution développable en série entière, notée S, telle que S(0) = 1.

$$II.B$$
 – On définit, $\forall x \in \mathbb{R}$, $G(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin(t)) dt$.

- **Q 11.** Montrer que G est définie sur \mathbb{R} et de classe C^2 sur \mathbb{R} .
- **Q 12.** Montrer que G est solution de II.1 sur \mathbb{R} .
- **Q 13.** Montrer que G = S.

III Partie III: Étude d'un endomorphisme sur un espace préhilbertien

III.A - Les polynômes d'Hermite.

On note w l'application de $\mathbb R$ dans $\mathbb R$, de classe C^∞ , définie pour tout $x \in \mathbb R$ par $w(x) = \mathrm{e}^{-\mathrm{x}^2}$. Pour tout $n \in \mathbb N$, on note H_n l'application de $\mathbb R$ dans $\mathbb R$ définie pour tout $x \in \mathbb R$ par $H_n(x) = (-1)^n \mathrm{e}^{\mathrm{x}^2} \mathrm{w}^{(\mathrm{n})}(\mathrm{x})$, où $w^{(n)}$ désigne la dérivée n-ième de w.

En particulier : $H_0(x) = 1$.

- **Q 14.** Calculer, pour tout $x \in \mathbb{R}$, $H_1(x)$, $H_2(x)$, $H_3(x)$.
- **Q 15.** Montrer, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$:

$$H_{n+1}(x) = 2xH_{n}(x) - H_{n}(x).$$

- **Q 16.** En déduire que, pour tout $n \in \mathbb{N}$, H_n est un polynôme de degré n dont vous déterminerez la parité.
- **Q 17.** Déterminer, pour tout $n \in \mathbb{N}$, le coefficient dominant de H_n .

III.B - Un produit scalaire.

On note E l'ensemble des applications f de $\mathbb R$ dans $\mathbb R$ continues et telles que $\int\limits_{-\infty}^{+\infty} f^2(x)e^{-x^2}\,dx$ converge.

- **Q 18.** Montrer que E est un \mathbb{R} espace vectoriel contenant $\mathbb{R}[X]$.
- **Q 19.** On note $\langle .,. \rangle$ l'application de E^2 dans $\mathbb R$ qui à tout $(f,g) \in E^2$ associe $\frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{+\infty} f(x)g(x)e^{-x^2} dx$.

Montrer que $\langle ., . \rangle$ est un produit scalaire sur E.

On notera ||.|| la norme euclidienne associée à ce produit scalaire.

III.C - Lien entre le produit scalaire et les polynômes d'Hermite

Q 20. Montrer, pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}[X]$:

$$\langle P', H_{n-1} \rangle = \langle P, H_n \rangle$$

- **Q 21.** En déduire, pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}_{n-1}[X] : (P \mid H_n) = 0$.
- **Q 22.** Montrer que, pour tout $n \in \mathbb{N}$, la famille $(H_0, ..., H_n)$ est une base orthogonale de $\mathbb{R}_n[X]$.

Soit $n \in \mathbb{N}$.

- **Q 23.** Montrer: $||H_n||^2 = \langle H_n^{(n)}, H_0 \rangle$.
- **Q 24.** En déduire la valeur de $||H_n||$.

III.D - Étude d'un endomorphisme autoadjoint

On note u, v, w les applications définies de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$, pour tout $P \in \mathbb{R}[X]$, par :

$$u(P) = -P^{''} + 2XP^{'} + P, \quad v(P) = 2XP - P^{'}, \quad w(P) = P^{'}.$$

Q 25. Montrer que u est un endomorphisme de $\mathbb{R}[X]$ et que $\forall n \in \mathbb{N}, \mathbb{R}_n[X]$ est stable par u.

Par la suite, on notera u_n l'endomorphisme induit par u sur $\mathbb{R}_n[X]$.

On admet que v et w sont aussi des endomorphismes de $\mathbb{R}[X]$, et on note Id l'application identique de $\mathbb{R}[X]$.

- **Q 26.** Etablir: $v \circ w = u \text{Id et } w \circ v = u + \text{Id.}$
- **Q 27.** En déduire : $u \circ v v \circ u = 2v$.
- **Q 28.** Montrer que, pour tout $\lambda \in \mathbb{R}$ et tout $P \in \mathbb{R}[X]$, si $u(P) = \lambda P$, alors $u(v(P)) = (\lambda + 2)v(P)$.
- **Q 29.** Montrer que $\forall k \in \mathbb{N}$, H_k est un vecteur propre de u et déterminer la valeur propre associée.
- **Q 30.** Soit $n \in \mathbb{N}$. Justifier que u_n est diagonalisable sur \mathbb{R} .
- **Q 31.** Établir, pour tout $(P,Q) \in \mathbb{R}[X]^2$:

$$\langle P^{'}, Q^{'} \rangle = \langle u(P), Q \rangle - \langle P, Q \rangle$$
.

Soit $n \in \mathbb{N}$.

- **Q 32.** Montrer que u_n est un endomorphisme autoadjoint de $\mathbb{R}_n[X]$.
- **Q 33.** Justifier, d'une deuxième manière, que u_n est diagonalisable sur $\mathbb R$ dans une base orthonormée de $\mathbb R_n[X]$ formée de vecteurs propres de u_n .
- **Q 34.** Donner une base orthonormale de $\mathbb{R}_n[X]$ constituée de vecteurs propres de u_n .

IV Partie IV: Une famille totale

Dans cette partie, nous conservons les notations de la partie III. L'espace E muni de son produit scalaire et la famille $(H_n)_{n\in\mathbb{N}}$ précédemment construite. Nous allons montrer que $(\operatorname{vect}(H_n, n\in\mathbb{N}))^{\perp}=\{0\}$. On dit dans ce cas là que la famille $(H_n)_{n\in\mathbb{N}}$ est totale dans l'espace préhilbertien E ou encore que c'est une base hilbertienne de E.

Q 35. Soit $\xi \in \mathbb{R}$. Pour $\xi \in E$, montrer que $x \mapsto f(x)e^{-ix\xi}e^{-x^2}$ est intégrable sur \mathbb{R} .

On pourra écrire $f(x)e^{-ix\xi}e^{-x^2} = f(x)e^{-x^2/2}e^{-ix\xi}e^{-x^2/2}$.

$$\forall \xi \in \mathbb{R}, \mathcal{F}(f)(\xi) = \int\limits_{-\infty}^{+\infty} f(t) e^{-it\xi} e^{-t^2} \, dt.$$

 \mathcal{F} est une application linéaire sur E, appelée la transformation de Fourier de f sur l'espace préhilbertien E. Nous admettrons pour la suite que \mathcal{F} est injective sur E.

Q 36. Montrer que, pour tout entier naturel p, la fonction $x \mapsto x^{2p} \exp(-x^2)$ est intégrable sur \mathbb{R} .

On note
$$M_p = \int\limits_{-\infty}^{+\infty} x^{2p} \exp(-x^2) \ dx.$$
 Déterminer la valeur de $M_p.$

Q 37. Soit $f \in E$. Justifier que

$$\forall \xi \in \mathbb{R}, \, \mathcal{F}(f)(\xi) = \int_{-\infty}^{+\infty} \sum_{n=0}^{+\infty} f(x)e^{-x^2} \frac{(-i)^n \xi^n x^n}{n!} \, dx$$

Q 38. Montrer que $\mathcal{F}(f)$ est développable en série entière sur \mathbb{R} .

Dans la suite de la partie, on suppose que $f \in (\text{vect}(H_n, n \in \mathbb{N}))^{\perp}$. Le but est de montrer que f est la fonction nulle.

- **Q 39.** Montrer que $\forall n \in \mathbb{N}$, $\int_{-\infty}^{+\infty} x^n f(x) e^{-x^2} dx = 0$.
- **Q 40.** En déduire que $\mathcal{F}(f)$ est la fonction nulle.
- Q 41. Conclure.

 \bullet \bullet FIN \bullet \bullet

