

Mathématiques 1

202 Siséa

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Ce sujet comporte quatre parties, qui peuvent être traitées indépendamment :

- La partie I étudie deux façons d'approcher le réel $\sqrt{2}$.
- La partie II généralise la méthode de Héron d'Alexandrie étudiée en sous-partie I.B au cadre des matrices symétriques positives.
- La partie III traite le cas général de la méthode de Newton numérique réelle.
- La partie IV s'inspire de la méthode de Newton abordée en partie III pour établir l'existence de la décomposition de Jordan-Chevalley-Dunford, par une approche algorithmique et en donne une application à la détermination de la racine carrée de certaines matrices.

Notations

Dans tout le sujet, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et q est un entier naturel non nul.

On note $\mathcal{M}_q(\mathbb{K})$ l'ensemble des matrices carrées de taille q à coefficients dans \mathbb{K} ; on note I_q la matrice identité dans $\mathcal{M}_q(\mathbb{K})$ et P^{T} la transposée d'une matrice P. On note $\mathcal{S}_q(\mathbb{R})$ l'ensemble des matrices symétriques appartenant à $\mathcal{M}_q(\mathbb{R})$. On note $\mathrm{O}(q)$ le sous-ensemble de $\mathcal{M}_q(\mathbb{R})$ constitué des matrices orthogonales, c'est-à-dire des matrices $P \in \mathcal{M}_q(\mathbb{R})$ vérifiant $P^{\mathrm{T}}P = I_q$.

Pour toute matrice $M \in \mathcal{M}_q(\mathbb{K})$ et pour tous $1 \leqslant i,j \leqslant q$, on note $[M]_{i,j}$ le coefficient d'indice (i,j) de M. Pour $a_1,...,a_q \in \mathbb{K}$, on note $\mathrm{diag}(a_1,...,a_q)$ la matrice A de $\mathcal{M}_q(\mathbb{K})$ telle que, pour tous $1 \leqslant i,j \leqslant q$:

$$\left[A\right]_{i,j} = \left\{ \begin{array}{l} a_i \text{ si } i = j \\ 0 \text{ sinon.} \end{array} \right.$$

On munit l'ensemble $\mathcal{M}_q(\mathbb{K})$ d'une norme $\|\cdot\|$. On rappelle que, par l'équivalence des normes en dimension finie, la notion de convergence d'une suite $(M_n)_{n\in\mathbb{N}}$ à valeurs dans $\mathcal{M}_q(\mathbb{K})$ ne dépend pas du choix de la norme $\|\cdot\|$. On pourra alors utiliser librement et sans démonstration dans tout le sujet les deux résultats suivants : pour toute suite $(M_n)_{n\in\mathbb{N}}$ à valeurs dans $\mathcal{M}_q(\mathbb{K})$ et pour toute matrice $M\in\mathcal{M}_q(\mathbb{K})$,

- la suite $(M_n)_{n\in\mathbb{N}}$ converge vers M si et seulement si, pour tous $1\leqslant i,j\leqslant q$, la suite $\left([M_n]_{i,j}\right)_{n\in\mathbb{N}}$ converge vers $[M]_{i,j}$;
- si $A \in \mathcal{M}_q(\mathbb{K})$ et si la suite $(M_n)_{n \in \mathbb{N}}$ converge vers M, alors les suites $(AM_n)_{n \in \mathbb{N}}$ et $(M_nA)_{n \in \mathbb{N}}$ convergent respectivement vers AM et MA.

I Quelques approximations de $\sqrt{2}$.

I.A - Via un développement en série entière.

Soit $\alpha \in \mathbb{R}$. On pose $a_0 = 1$ et, pour tout $n \in \mathbb{N}^*$,

$$a_n = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} = \frac{1}{n!}\prod_{k=0}^{n-1}(\alpha-k).$$

Q 1. Montrer que le rayon de convergence R de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$ vaut :

$$R = \begin{cases} 1 & \text{si } \alpha \notin \mathbb{N} \\ +\infty & \text{sinon.} \end{cases}$$

Q 2. Donner, sans justification supplémentaire, l'expression de la fonction somme de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$ sur]-R,R[.

Q 3. Pour tout $n \in \mathbb{N}$, on pose $b_n = \frac{(2n)!}{2^{2n}(2n-1)(n!)^2}$. Montrer que, pour tout $x \in]-1,1[$,

$$\sqrt{1+x} = \sum_{n=0}^{+\infty} (-1)^{n+1} b_n x^n.$$

Q 4. Déterminer un équivalent simple de la suite $(b_n)_{n\in\mathbb{N}}$. En déduire la nature de la série $\sum_{n\in\mathbb{N}} (-1)^{n+1}b_n$.

Q 5. Montrer que la série entière $\sum_{n \in \mathbb{N}} (-1)^{n+1} b_n x^n$ converge uniformément sur [-1,1] et en déduire la valeur

$$\det \sum_{n=0}^{+\infty} (-1)^{n+1} b_n.$$

Q 6. Montrer que

$$\sqrt{2} = \sum_{k=0}^n (-1)^{k+1} b_k + \mathop{O}_{n \to +\infty} \Bigl(\frac{1}{n^{3/2}} \Bigr).$$

I.B - Via la méthode de Héron d'Alexandrie.

Soit $a \in \mathbb{R}_+$. On définit la suite $(c_n(a))_{n \in \mathbb{N}}$ par :

$$\left\{ \begin{aligned} &c_0(a)=1\\ &\forall n\in\mathbb{N},\, c_{n+1}(a)=\frac{1}{2}\Big(c_n(a)+\frac{a}{c_n(a)}\Big). \end{aligned} \right.$$

Q 7. Montrer, par récurrence sur $n \in \mathbb{N}$, que, pour tout $n \in \mathbb{N}$, $c_n(a)$ est bien défini et que $c_n(a) > 0$.

Q 8. Pour tout $n \in \mathbb{N}$, donner une expression de $c_{n+1}(a)^2 - a$ faisant intervenir $(c_n(a)^2 - a)^2$. En déduire que, pour tout $n \ge 1$, $c_n(a) \ge \sqrt{a}$.

Q 9. Montrer que $(c_n(a))_{n\in\mathbb{N}}$ converge vers \sqrt{a} .

Q 10. Calculer $c_1(2)$. À l'aide de la question Q 8, montrer que, pour tout $n \in \mathbb{N}^*$,

$$c_n(2)^2 - 2 \leqslant 8 \Big(\frac{1}{32}\Big)^{2^{n-1}}.$$

En déduire que

$$\sqrt{2} = c_n(2) + \mathop{O}_{n \to +\infty} \biggl(\Bigl(\frac{1}{32}\Bigr)^{2^{n-1}} \biggr).$$

I.C - Comparaison des différentes approximations de $\sqrt{2}$: vitesses de convergence.

Q 11. Parmi les deux suites $\left(\frac{1}{n^{3/2}}\right)$ et $\left(\left(\frac{1}{32}\right)^{2^{n-1}}\right)$, déterminer celle qui converge le plus vite vers zéro.

Dans la question suivante, on s'interdit d'utiliser une valeur approchée de $\sqrt{2}$ stockée dans Python. En particulier, on s'interdit l'utilisation de 2**(1/2), math.sqrt(2) ou numpy.sqrt(2).

Q 12. Écrire une suite d'instructions en Python permettant, grâce à la méthode de la question Q 10, d'obtenir une approximation de $\sqrt{2}$ avec 10 décimales correctes.

II Racine carrée d'une matrice symétrique positive.

On note $\mathcal{S}_q^+(\mathbb{R})$ l'ensemble des matrices symétriques positives de $\mathcal{M}_q(\mathbb{R})$, c'est-à-dire des matrices $M \in \mathcal{S}_q(\mathbb{R})$ vérifiant $X^TMX \geqslant 0$ pour toute matrice colonne $X \in \mathcal{M}_{q,1}(\mathbb{R})$.

Dans toute cette partie, étant donnée une matrice $M \in \mathcal{M}_q(\mathbb{R})$, on appelle racine carrée de M toute matrice $B \in \mathcal{M}_q(\mathbb{R})$ telle que $B^2 = M$.

II.A - Racines carrées de la matrice I_2 .

 ${f Q}$ 13. Rappeler sans démonstration la description des matrices de ${\cal O}(2).$

On décrira leurs coefficients en fonction d'un paramètre $\theta \in \mathbb{R}$.

Q 14. Déterminer les racines carrées de I_2 appartenant à $\mathrm{O}(2)$. Que peut-on conclure quant au nombre de racines carrées de I_2 ?

II.B - Existence et unicité d'une racine carrée symétrique positive.

Q 15. Rappeler sans démonstration la condition nécessaire et suffisante portant sur le spectre d'une matrice symétrique pour qu'elle soit positive.

Q 16. Soit $M \in \mathcal{S}_q^+(\mathbb{R})$. Déterminer une matrice $B \in \mathcal{S}_q^+(\mathbb{R})$ telle que $B^2 = M$.

Q 17. Montrer que B est la seule racine carrée de M appartenant à $\mathcal{S}_{q}^{+}(\mathbb{R})$.

On note alors \sqrt{M} l'unique racine carrée symétrique positive de M.

II.C - Une méthode de Héron d'Alexandrie matricielle.

Soit $M \in \mathcal{S}_q^+(\mathbb{R})$. On note $\lambda_1, ..., \lambda_q$ les valeurs propres de M comptées avec multiplicité. On rappelle que, d'après le théorème spectral, il existe une matrice $P \in \mathcal{O}(q)$ telle que

$$M = P \operatorname{diag}(\lambda_1, ..., \lambda_a) P^{\mathrm{T}}.$$

On rappelle de plus que, pour tout réel $a \geqslant 0$, la suite $(c_n(a))_{n \in \mathbb{N}}$ définie en sous-partie I.B, est à valeurs strictement positives et converge vers \sqrt{a} . On pose alors :

$$\left\{ \begin{aligned} M_0 &= I_q \\ \forall n \in \mathbb{N}, \ M_{n+1} &= \frac{1}{2} \left(M_n + M M_n^{-1} \right). \end{aligned} \right.$$

Q 18. Montrer, par récurrence sur $n \in \mathbb{N}$ que, pour tout $n \in \mathbb{N}$, M_n est bien définie et que

$$M_n = P \operatorname{diag}(c_n(\lambda_1), ..., c_n(\lambda_q)) P^{\mathrm{T}}.$$

Q 19. En déduire que la suite $(M_n)_{n\in\mathbb{N}}$ converge vers \sqrt{M} .

III Méthode de Newton numérique.

Soit I un intervalle ouvert non vide de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 sur I telle que f' ne s'annule pas sur I.

III.A - Convergence de la méthode de Newton.

Q 20. Que dire du nombre de points d'annulation de f sur I?

On suppose qu'il existe $c \in I$ tel que f(c) = 0. Pour tout r > 0, on pose $J_r = [c - r, c + r]$.

Soit $(c_n)_{n\in\mathbb{N}}$ une suite telle que

$$\left\{ \begin{aligned} &c_0 \in I \\ \forall n \in \mathbb{N}, \, c_{n+1} = c_n - \frac{f(c_n)}{f'(c_n)}. \end{aligned} \right.$$

L'objectif de cette sous-partie III.A est de montrer qu'il existe r>0 tel que $J_r\subset I$ et tel que, si $c_0\in J_r$, alors $(c_n)_{n\in\mathbb{N}}$ converge vers c.

 $\mathbf{Q} \ \mathbf{21.} \quad \text{ Soit } r>0 \text{ tel que } J_r \subset I. \text{ Justifier que } s_r = \sup_{J_r} |f''| \text{ et } i_r = \inf_{J_r} |f'| \text{ sont bien définis et que } i_r>0.$

On note $K_r = \frac{s_r}{2i_r}$.

M069/2024-05-02 10:44:07

Q 22. Justifier qu'il existe r > 0 tel que $0 \le rK_r < 1$.

Dans la suite de cette sous-partie III.A, on fixe r > 0 tel que $rK_r < 1$.

Q 23. On suppose que $n \in \mathbb{N}$ et $c_n \in J_r$. À l'aide de l'inégalité de Taylor-Lagrange, montrer que

$$|c_{n+1} - c| \leq K_r |c_n - c|^2$$

puis en déduire que $c_{n+1} \in J_r$.

 $\mathbf{Q} \ \mathbf{24.} \quad \text{Montrer que, si } c_0 \in J_r \text{, alors, pour tout } n \in \mathbb{N}, \ |c_n - c| \leqslant \frac{\left(K_r |c_0 - c|\right)^{2^n}}{K_r} \text{ et conclure.}$

III.B - Une implémentation en Python.

Q 25. On désigne dans cette question par df la fonction Python représentant f'. Écrire une fonction Python newton(c0,f,df) prenant en arguments le réel c_0 et les fonctions f et f' et renvoyant, si la suite $(c_n)_{n\in\mathbb{N}}$ converge, une valeur approchée de c et la valeur None si $(c_n)_{n\in\mathbb{N}}$ diverge.

On pourra convenir ici que la suite $(c_n)_{n\in\mathbb{N}}$ converge si on trouve un $n\leqslant 50$ tel que $|f(c_n)|<10^{-10}$, et qu'elle diverge sinon.

IV Décomposition de Jordan-Chevalley-Dunford et calcul de racine carrée.

On dit qu'une matrice $N\in\mathcal{M}_q(\mathbb{C})$ est nilpotente s'il existe $k\in\mathbb{N}^*$ tel que $N^k=0.$

Dans toute cette partie IV, on fixe $M \in \mathcal{M}_q(\mathbb{C})$. On note $\lambda_1,...,\lambda_s$ les valeurs propres deux à deux distinctes de M (avec $s \in \mathbb{N}^*$). On définit alors

$$P(X) = \prod_{i=1}^s (X - \lambda_i).$$

On note P' le polynôme dérivé de P.

Pour tout polynôme $Q=\sum_{k=0}^d \gamma_k X^k \in \mathbb{C}[X],$ on note $Q(M)=\sum_{k=0}^d \gamma_k M^k \in \mathcal{M}_q(\mathbb{C})$ et on pose

$$\mathbb{C}[M] = \{Q(M) | Q \in \mathbb{C}[X]\}.$$

On admet alors et on pourra utiliser librement que:

- si $A, B \in \mathbb{C}[M]$, alors A et B commutent, et A + B et AB appartiennent à $\mathbb{C}[M]$;
- si $Q \in \mathbb{C}[X]$ et si $A \in \mathbb{C}[M]$, alors $Q(A) \in \mathbb{C}[M]$.

IV.A - Une méthode de Newton matricielle.

Q 26. Montrer que, pour toute racine complexe μ de P', la matrice $M - \mu I_q$ est inversible. En déduire que P'(M) est inversible.

Q 27. Montrer que le polynôme caractéristique χ_M de M divise P^q . En déduire que P(M) est nilpotente. Grâce à ces résultats, on peut définir la suite de matrices $(M_n)_{n\in\mathbb{N}}$ en posant :

$$\begin{cases} M_0 = M \\ \forall n \in \mathbb{N}, \, M_{n+1} = M_n - P(M_n)P'(M_n)^{-1} \end{cases}$$

On admet que, pour tout $n \in \mathbb{N}$:

- M_n est bien définie et appartient à $\mathcal{M}_q(\mathbb{C})$;
- il existe $B_n \in \mathbb{C}[M]$ telle que $P(M_n) = (P(M))^{2^n}B_n$;
- la matrice $P'(M_n)$ est inversible.
- **Q 28.** Montrer que la suite $(M_n)_{n\in\mathbb{N}}$ est stationnaire.
- **Q 29.** Montrer que, pour tout $n \in \mathbb{N}$, les matrices M et M_n commutent.
- **Q 30.** On note A la limite de $(M_n)_{n\in\mathbb{N}}$. Montrer que A est diagonalisable.
- **Q 31.** On pose N = M A. Justifier que A et N commutent et que N est nilpotente.

IV.B - Un calcul de racine carrée pour certaines matrices réelles trigonalisables

Q 32. En utilisant le développement limité en 0 de la fonction $x \mapsto \sqrt{1+x}$, montrer qu'il existe un polynôme $R_q \in \mathbb{R}[X]$ tel que X^q divise $1+X-R_q(X)^2$.

Q 33. En déduire l'expression d'une racine carrée de $I_q + N$ lorsque N est une matrice nilpotente.

Pour les questions suivantes, on suppose que M est à coefficients réels et trigonalisable dans $\mathcal{M}_q(\mathbb{R})$ et que le spectre de M est inclus dans \mathbb{R}_+^* .

On considère alors les matrices A et N introduites dans la sous-partie IV.A.

- **Q 34.** Justifier que A et N sont à coefficients réels et que A est diagonalisable dans $\mathcal{M}_q(\mathbb{R})$.
- **Q 35.** Montrer que le spectre de A est inclus dans \mathbb{R}_{+}^{*} .
- **Q 36.** Justifier que la méthode de Héron d'Alexandrie de la sous-partie II.C peut être appliquée à la matrice A afin d'obtenir une racine carrée A' de A. En déduire l'expression d'une racine carrée de M.

