

Mathématiques 2

MP, MPI

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Notations

- Dans tout le problème, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C.$
- On note $\mathbb{K}[X]$ le \mathbb{K} -espace vectoriel des polynômes à coefficients dans \mathbb{K} .
- Pour tout $d \in \mathbb{N}$, $\mathbb{K}_d[X]$ désigne le \mathbb{K} -espace vectoriel des polynômes de degré inférieur ou égal à d.
- On note $\mathbb U$ le groupe multiplicatif des nombres complexes de module 1.

Objectifs du problème

Soit h une fonction de $\mathbb K$ dans $\mathbb K$. On dit qu'une fonction f de $\mathbb K$ dans $\mathbb K$ est solution de l'équation (E_h) sur $\mathbb K$ si

$$\forall x \in \mathbb{K}, f(x+1) - f(x) = h(x). \tag{E_h}$$

Le but du problème est l'étude de l'équation $({\cal E}_h).$

La partie I de ce problème étudie l'existence de solutions dans le cas où h est polynomiale.

La partie II introduit la définition et établit quelques propriétés des fonctions entières.

La partie III définit les polynômes de Bernoulli et explicite une solution polynomiale à l'équation (E_h) , ainsi qu'une application analytique de ces polynômes.

La partie IV étend la résolution de (E_h) au cas où h est une fonction entière.

I Étude de l'opérateur différence finie

On considère l'application Δ définie par :

$$\Delta: \left\{ \begin{matrix} \mathbb{K}[X] \to \mathbb{K}[X] \\ P(X) \mapsto P(X+1) - P(X) \end{matrix} \right.$$

- **Q 1.** Montrer que Δ est un endomorphisme de $\mathbb{K}[X]$.
- **Q 2.** Soit $P \in \mathbb{K}[X]$. Déterminer le degré de $\Delta(P)$ en fonction de celui de P.
- **Q 3.** Montrer que, pour tout $d \in \mathbb{N}^*$, Δ induit un endomorphisme sur $\mathbb{K}_d[X]$.

On note Δ_d l'endomorphisme de $\mathbb{K}_d[X]$ induit par Δ .

- **Q 4.** Déterminer $\operatorname{Ker}(\Delta_d)$ et $\operatorname{Im}(\Delta_d)$ pour tout $d \in \mathbb{N}^*$.
- **Q 5.** En déduire $\operatorname{Ker}(\Delta)$ et $\operatorname{Im}(\Delta)$. Appliquer les résultats obtenus à l'étude de l'équation (E_h) dans le cas où h est une fonction polynomiale.
- **Q 6.** On suppose (pour cette question seulement) que h est la fonction $x \mapsto x$. Déterminer une solution de (E_h) dans $\mathbb{K}_2[X]$, puis toutes les solutions polynomiales de l'équation (E_h) .
- **Q 7.** Soit $d \in \mathbb{N}^*$. Déterminer un polynôme annulateur de Δ_d . L'endomorphisme Δ_d est-il diagonalisable ?

II Fonctions entières

On note ω l'application de [0,1] dans $\mathbb C$ définie, pour tout $t\in[0,1]$, par $\omega(t)=\mathrm{e}^{2\mathrm{i}\pi t}$.

II.A - Généralités

On note \mathcal{E} l'ensemble des fonctions $f:\mathbb{C}\to\mathbb{C}$ développables en série entière de rayon de convergence infini.

- **Q 8.** Justifier que si $(f,g) \in \mathcal{E}^2$ et $(\lambda,\mu) \in \mathbb{C}^2$, alors $\lambda f + \mu g \in \mathcal{E}$ et $fg \in \mathcal{E}$.
- **Q 9.** Soit $f \in \mathcal{E}$ dont on note $\sum a_n z^n$ le développement en série entière.

Montrer que, pour tout $k \in \mathbb{Z}$:

$$\int_{0}^{1} f(\omega(t))\omega(t)^{-k} dt = \begin{cases} a_k & \text{si } k \in \mathbb{N} \\ 0 & \text{sinon} \end{cases}$$

II.B - Une intégrale

Pour tout $p \in \mathbb{Z}$, on pose

$$I_p = \int_0^1 \frac{\omega(t)^{p+1}}{e^{\omega(t)} - 1} dt.$$

- **Q 10.** Vérifier que cette intégrale est bien définie pour tout $p \in \mathbb{Z}$.
- **Q 11.** Montrer qu'il existe une fonction $\beta \in \mathcal{E}$ et une constante $C \in]0,1[$ telles que, pour tout $\zeta \in \mathbb{U}$,

$$e^{\zeta} - 1 = \zeta(1 + \zeta\beta(\zeta))$$
 et $|\beta(\zeta)| \leq C$.

Q 12. En déduire que pour tout $\zeta \in \mathbb{U}$ et tout $p \in \mathbb{Z}$,

$$\frac{\zeta^p}{e^{\zeta} - 1} = \sum_{j=0}^{+\infty} (-1)^j \zeta^{j+p-1} \beta(\zeta)^j.$$

Q 13. Montrer que $I_0 = 1$ et que, pour tout $p \in \mathbb{N}^*$, $I_p = 0$.

III Polynômes de Bernoulli

Pour tout $n\in\mathbb{N}$ et tout $z\in\mathbb{C},$ on définit dans cette partie :

$$B_n(z) = n! \int_0^1 \frac{\mathrm{e}^{z\omega(t)}}{(\mathrm{e}^{\omega(t)} - 1)\omega(t)^{n-1}} \mathrm{d}t.$$

III.A – Lien avec l'équation (E_h)

Q 14. Montrer que, pour tout $n \in \mathbb{N}$ et tout $z \in \mathbb{C}$,

$$B_n(z) = n! \sum_{k=0}^n \frac{z^k}{k!} I_{k-n}.$$

En déduire que B_n est un polynôme unitaire de degré n.

- **Q 15.** Montrer que, pour tout $n \in \mathbb{N}^*$, $B'_n = nB_{n-1}$.
- **Q 16.** Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $z \in \mathbb{C}$,

$$B_n(z+1) - B_n(z) = nz^{n-1}.$$

Q 17. En déduire l'expression d'une fonction polynomiale vérifiant l'équation (E_h) sur \mathbb{C} lorsque h est une fonction polynomiale.

III.B - Unicité

Q 18. Montrer que $(B_n)_{n\in\mathbb{N}}$ est l'unique suite de polynômes vérifiant

$$\begin{cases} B_0 = 1 \\ \forall n \in \mathbb{N}^*, \, B_n' = nB_{n-1} \\ \forall n \in \mathbb{N}^*, \int\limits_0^1 B_n(t) \, \mathrm{d}t = 0 \end{cases}$$

Q 19. Soit $(H_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par : $\forall n\in\mathbb{N},\ H_n(X)=(-1)^nB_n(1-X)$. Montrer que pour tout $n \in \mathbb{N}$, $H_n = B_n$.

III.C - Une application analytique

Soit ψ la fonction de \mathbb{R} dans \mathbb{R} telle que, pour tout $x \in \mathbb{R}$,

$$\psi(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0\\ 1 & \text{sinon} \end{cases}$$

Soit de plus u la fonction de \mathbb{R}^2 dans \mathbb{R} telle que, pour tout $(x,t) \in \mathbb{R}^2$,

$$u(x,t) = \psi(x)e^{tx}$$
.

Q 20. Montrer que u est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 .

Q 21. Pour tout $(x,t) \in \mathbb{R}^2$, calculer $\frac{\partial u}{\partial t}(x,t)$ puis montrer que, pour tout $n \in \mathbb{N}^*$,

$$\frac{\partial}{\partial t}\frac{\partial^n u}{\partial x^n}(x,t)=x\frac{\partial^n u}{\partial x^n}(x,t)+n\frac{\partial^{n-1} u}{\partial x^{n-1}}(x,t).$$

Pour tout $n \in \mathbb{N}$, soit A_n la fonction de \mathbb{R} dans \mathbb{R} telle que, pour tout $t \in \mathbb{R}$, $A_n(t) = \frac{\partial^n u}{\partial x^n}(0,t)$.

Montrer que, pour tout $n \in \mathbb{N}$, $A_n = B_n$.

IV Solution entière de l'équation (E_h)

IV.A - Une inégalité de contrôle

On se propose dans cette partie de montrer par l'absurde la propriété $\mathcal P$:

$$\exists c > 0, \forall n \in \mathbb{N}, \forall z \in \mathbb{C}, (|z| = (2n+1)\pi \Rightarrow |e^z - 1| \geqslant c).$$

On suppose que \mathcal{P} est fausse.

Q 23. Montrer l'existence d'une suite d'entiers naturels $(n_p)_{p\in\mathbb{N}}$ et d'une suite de nombres complexes $(z_p)_{p\in\mathbb{N}}$ telles que:

$$\mathrm{e}^{z_p} \underset{p \to +\infty}{\to} 1 \quad \mathrm{et} \quad \forall p \in \mathbb{N}, \, |z_p| = (2n_p + 1)\pi$$

 $\begin{array}{ll} \text{Pour tout } p \in \mathbb{N}, \, \text{on note } a_p = \operatorname{Re}(z_p) \, \text{et } b_p = \operatorname{Im}(z_p). \\ \mathbf{Q} \ \mathbf{24.} \quad \text{Montrer que } a_p \underset{p \to +\infty}{\to} 0 \, \text{et } |z_p| - |b_p| \underset{p \to +\infty}{\to} 0. \end{array}$

Q 25. Pour tout $p \in \mathbb{N}$, on note

$$\varepsilon_p = \begin{cases} +1 \text{ si } b_p \geqslant 0 \\ -1 \text{ si } b_p < 0 \end{cases}$$

En étudiant $\exp(z_p - i\varepsilon_p|z_p|)$, aboutir à une contradiction et conclure.

IV.B - Une solution à (E_h)

Pour tout $n \in \mathbb{N}$, on définit maintenant

$$\gamma_n: \left\{ \begin{matrix} [0,1] \to \mathbb{C} \\ t \mapsto (2n+1)\pi e^{2\mathrm{i}\pi t} \end{matrix} \right.$$

Pour tout $n \in \mathbb{N}$ et tout $z \in \mathbb{C}$, soit

$$Q_n(z) = n! \int\limits_0^1 \frac{\mathrm{e}^{z\gamma_n(t)}}{\left(\mathrm{e}^{\gamma_n(t)} - 1\right)\gamma_n(t)^{n-1}} \mathrm{d}t.$$

- $\mathbf{Q} \ \mathbf{26.} \quad \text{Montrer que, pour tout } n \in \mathbb{N}, \, Q_n \in \mathcal{E}.$
- Q 27. Montrer que

$$\forall n \in \mathbb{N}^*, \, \forall z \in \mathbb{C}, \quad Q_n(z+1) - Q_n(z) = nz^{n-1}.$$

Q 28. Montrer qu'il existe deux constantes $a, b \in \mathbb{R}_+^*$ telles que, pour tout $n \in \mathbb{N}^*$ et tout $z \in \mathbb{C}$,

$$|Q_n(z)| \leqslant a e^{bn|z|}$$
.

 $\mathbf{Q} \ \ \mathbf{29.} \quad \ \ \text{En d\'eduire l'existence d'une solution dans } \mathcal{E} \ \text{\`a l'\'equation } (E_h) \ \text{lorsque } h \in \mathcal{E}.$

• • • FIN • • •