

Mathématiques 1

MP, MPI

2024

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrice autorisée

Inégalité de Carleman

On s'intéresse dans ce problème à une inégalité établie par Torsten Carleman : si $(a_k)_{k\in\mathbb{N}^*}$ est une suite de réels strictement positifs telle que $\sum a_n$ converge, alors la série de terme général $\left(\prod_{k=1}^n a_k\right)^{1/n}$ converge et

$$\sum_{n=1}^{+\infty} \biggl(\prod_{k=1}^n a_k\biggr)^{1/n} \leqslant \mathrm{e} \sum_{n=1}^{+\infty} a_n.$$

Le problème est constitué de trois parties largement indépendantes. La première partie commence en démontrant un analogue intégral de cette inégalité : l'inégalité de Knopp. La deuxième partie s'intéresse à la démonstration originale de l'inégalité de Carleman, utilisant du calcul différentiel. Enfin, la troisième partie étudie l'inégalité de Carleman-Yang, qui est un raffinement de l'inégalité de Carleman.

I Inégalité de Knopp

Dans cette partie, on démontre l'inégalité de Knopp, souvent présentée comme analogue continu de l'inégalité de Carleman (on justifie cette appellation en fin de partie).

I.A – Deux inégalités intégrales

I.A.1) Inégalité intégrale de Jensen

Q 1. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue par morceaux à valeurs dans un intervalle J. Soit φ une fonction continue et convexe sur J. Démontrer que

$$\varphi\left(\frac{1}{b-a}\int_{a}^{b}f(t)\,\mathrm{d}t\right)\leqslant\frac{1}{b-a}\int_{a}^{b}\varphi\circ f(t)\,\mathrm{d}t.$$

On pourra utiliser des sommes de Riemann.

I.A.2) Une autre inégalité intégrale

Soit $f: \mathbb{R}_+ \to \mathbb{R}$, une fonction continue par morceaux, strictement positive et intégrable. Pour tout x>0, on pose

$$g(x) = \frac{1}{x} \int_{0}^{x} tf(t) dt$$
 et $h(x) = \frac{1}{x}g(x) = \frac{1}{x^2} \int_{0}^{x} tf(t) dt$.

- **Q 2.** Déterminer la limite de g(x) lorsque x tend vers 0.
- **Q 3.** Déterminer la limite de g(x) lorsque x tend vers $+\infty$.

Notant $\mathbb{1}_{[0,x]}$ la fonction indicatrice de [0,x], on pourra remarquer que $g(x)=\int\limits_0^{+\infty}\frac{1}{x}tf(t)\mathbb{1}_{[0,x]}(t)\,\mathrm{d}t.$

Q 4. En déduire que l'intégrale $\int_{0}^{+\infty} h(x) dx$ converge et que

$$\int_{0}^{+\infty} f(x) dx = \int_{0}^{+\infty} h(x) dx.$$

On pourra utiliser une intégration par parties.

I.B - Démonstration de l'inégalité de Knopp

Soit f une fonction continue par morceaux, strictement positive, intégrable sur \mathbb{R}_+ .

Q 5. Démontrer que, pour tout x > 0,

$$\exp\left(\frac{1}{x}\int\limits_0^x\ln(f(t))\,\mathrm{d}t\right)\leqslant\frac{\mathrm{e}}{x^2}\int\limits_0^xtf(t)\,\mathrm{d}t.$$

On pourra remarquer que $\ln(f(t)) = \ln(tf(t)) - \ln(t)$.

Q 6. En déduire que $x \mapsto \exp\left(\frac{1}{x} \int_{0}^{x} \ln(f(t)) dt\right)$ est intégrable sur \mathbb{R}_{+}^{*} et que

$$\int\limits_0^{+\infty} \exp\left(\frac{1}{x}\int\limits_0^x \ln(f(t))\,\mathrm{d}t\right)\,\mathrm{d}x \leqslant \mathrm{e}\int\limits_0^{+\infty} f(x)\,\mathrm{d}x.$$

I.C - Application à l'inégalité de Carleman

On suppose dans cette sous-partie que $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels strictement positifs. On note f la fonction en escalier qui, pour tout $k\in\mathbb{N}^*$, est égale à a_k sur l'intervalle [k-1,k[.

Q 7. Soit k dans \mathbb{N}^* . Démontrer que la fonction v_k définie sur [k-1,k] par

$$\begin{cases} v_k(x) = \frac{1}{x} \sum_{i=1}^{k-1} \ln(a_i) + \frac{1}{x} (x-k+1) \ln(a_k) & \text{si } k \geqslant 2 \\ v_1(x) = \ln(a_1) \end{cases}$$

est minimale pour x = k.

Q 8. Démontrer que, pour tout k dans \mathbb{N}^* ,

$$\int\limits_{k-1}^k \exp\left(\frac{1}{x}\int\limits_0^x \ln(f(t))\,\mathrm{d}t\right)\,\mathrm{d}x \geqslant \exp\left(\frac{1}{k}\sum_{i=1}^k \ln(a_i)\right).$$

On pourra utiliser la question précédente.

Q 9. En déduire l'inégalité de Carleman dans le cas où $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante.

Q 10. Expliquer comment on peut retirer l'hypothèse de décroissance.

II Inégalité de Carleman

On démontre dans cette partie l'inégalité de Carleman d'une manière indépendante de la partie I.

La sous-partie II.A établit l'inégalité arithmético-géométrique avec des méthodes de calcul différentiel qui permettent de se familiariser avec celles qui seront utilisées dans la sous-partie II.B pour démontrer l'inégalité de Carleman

La sous-partie II.B est indépendante de II.A. L'inégalité arithmético-géométrique sera utilisée dans la partie III. Soit n dans \mathbb{N}^* . On note U_n l'ouvert $(\mathbb{R}_+^*)^n$. Son adhérence, notée $\overline{U_n}$, est $(\mathbb{R}_+)^n$.

II.A - Inégalité arithmético-géométrique

Soit s>0. On définit les fonctions f et g_s sur $\overline{U_n}$ en posant, pour tout $x=(x_1,...,x_n)\in \overline{U_n}$,

$$f(x) = \prod_{k=1}^n x_k \qquad \text{et} \qquad g_s(x) = \left(\sum_{k=1}^n x_k\right) - s.$$

On note X_s le sous-ensemble de $\overline{U_n}$ constitué des zéros de $g_s: X_s = \{x \in \overline{U_n} \mid g_s(x) = 0\}$.

Q 11. On admet que f et g_s sont de classe \mathcal{C}^1 sur U_n . Donner l'expression de leur gradient en un point $x=(x_1,...,x_n)$ de U_n .

Q 12. Démontrer que la restriction de f à X_s admet un maximum sur X_s et que ce maximum est en fait atteint sur $X_s \cap U_n$.

On pourra vérifier que f est strictement positive en certains points de $X_s \cap U_n$.

On note $a=(a_1,...,a_n)$ un élément de $X_s\cap U_n$ en lequel la restriction de f à X_s atteint son maximum.

Q 13. Démontrer qu'il existe un réel $\lambda > 0$ tel que, pour tout k dans [1, n], $a_k = \frac{f(a)}{\lambda}$.

 $\mathbf{Q} \ \mathbf{14.} \quad \text{Démontrer alors que, pour tout } (x_1,...,x_n) \in U_n \cap X_s, \\ \left(\prod_{i=1}^n x_i\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^n x_i \text{ et en déduire l'inégalité arithmético-géométrique}$

$$\forall (x_1,...,x_n) \in (\mathbb{R}_+)^n, \qquad \left(\prod_{i=1}^n x_i\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^n x_i.$$

II.B - Démonstration de l'inégalité de Carleman

On considère l'application F_n de $\overline{U_n}$ dans \mathbb{R} , définie par

$$\forall (x_1,...,x_n) \in \overline{U_n}, \qquad F_n(x_1,...,x_n) = x_1 + (x_1x_2)^{1/2} + (x_1x_2x_3)^{1/3} + \cdots + (x_1\cdots x_n)^{1/n}.$$

On note h_n l'application de $\overline{U_n}$ dans \mathbb{R} , définie par

$$\forall (x_1, ..., x_n) \in \overline{U_n}, \qquad h_n(x_1, ..., x_n) = x_1 + \dots + x_n - 1.$$

On admet que F_n et h_n sont toutes deux de classe \mathcal{C}^1 sur U_n .

On note H_n l'ensemble $H_n=\{(x_1,...,x_n)\in\mathbb{R}^n\mid x_1+\cdots+x_n=1\}.$

Q 15. Déterminer le gradient de F_n et le gradient de h_n en tout point de U_n .

Q 16. Démontrer que la restriction de F_n à $\overline{U_n} \cap H_n$ admet un maximum.

On admet que le maximum de F_n est en fait atteint sur $U_n \cap H_n$.

On note M_n le maximum de F_n sur $\overline{U_n} \cap H_n$ et on note $(a_1,...,a_n)$ un point de $U_n \cap H_n$ en lequel il est atteint. Pour k entre 1 et n, on note $\gamma_k = (a_1 a_2 \cdots a_k)^{1/k}$.

Q 17. Démontrer qu'il existe un réel $\lambda > 0$ tel que

$$\begin{cases} \gamma_1 + \frac{\gamma_2}{2} + \dots + \frac{\gamma_n}{n} = \lambda a_1 \\ \frac{\gamma_2}{2} + \dots + \frac{\gamma_n}{n} = \lambda a_2 \\ \vdots \\ \frac{\gamma_n}{n} = \lambda a_n \\ a_1 + a_2 + \dots + a_n = 1 \end{cases}$$

Q 18. En déduire que :

- a) $\lambda = \gamma_1 + \gamma_2 + \dots + \gamma_n = M_n ;$
- b) pour tout k dans [1, n], $\gamma_k = \lambda \omega_k a_k$, où

$$\left\{ \begin{array}{l} \omega_k = k \left(1 - \frac{a_{k+1}}{a_k}\right) \text{si } k \in \llbracket 1, n-1 \rrbracket \\ \omega_n = n \end{array} \right.$$

L'objectif des trois questions suivantes est de démontrer que $\lambda \leq$ e. On suppose par l'absurde que $\lambda >$ e.

- **Q 19.** Vérifier que, pour tout k dans \mathbb{N} , $\frac{1}{e} \leqslant \left(\frac{k+1}{k+2}\right)^{k+1}$.
- **Q 20.** Démontrer que $\omega_1 \leqslant \frac{1}{e}$ et que, pour tout k dans $\llbracket 1, n \rrbracket$, $\omega_k \leqslant \frac{k}{k+1}$.

On pourra démontrer, pour $k \in \llbracket 1, n-1 \rrbracket$, que $\omega_{k+1}^{k+1} = \frac{1}{\lambda} \omega_k^k \left(1 - \frac{\omega_k}{k}\right)^{-k}$.

Q 21. Aboutir à une contradiction sur ω_n . En déduire que, pour tout n dans \mathbb{N}^* , pour tout $(x_1, ..., x_n) \in (\mathbb{R}_+^*)^n$ tels que $x_1 + \cdots + x_n = 1$,

$$\sum_{k=1}^{n} (x_1 x_2 \cdots x_k)^{1/k} \leqslant e.$$

Q 22. En déduire l'inégalité de Carleman.

III Inégalité de Carleman-Yang

Le but de cette dernière partie est d'établir l'inégalité de Carleman-Yang, qui est un raffinement de l'inégalité de Carleman.

III.A - Un développement en série entière

Soit φ la fonction définie par

$$\forall t \in]-1,1[\setminus \{0\}, \qquad \varphi(t) = (1-t)^{1-1/t}.$$
 (III.1)

On définit aussi la suite $(b_n)_{n\in\mathbb{N}}$ par

$$\left\{ \begin{aligned} b_0 &= -1 \\ \forall n \in \mathbb{N}^*, \quad b_n &= -\frac{1}{n} \sum_{k=1}^n \frac{1}{k+1} b_{n-k} \end{aligned} \right.$$

Q 23. Justifier que φ est prolongeable par continuité en 0 et préciser la valeur de son prolongement en 0. On notera toujours φ ce prolongement.

Q 24. Démontrer que, pour tout n dans \mathbb{N}^* , $|b_n| \leq 1$. En déduire une inégalité sur le rayon de convergence de la série entière $\sum_{k>0} b_k t^k$.

Q 25. Démontrer que, pour tout t dans $]-1,1[, \varphi'(t) = \varphi(t)\psi(t),$ où

$$\forall t \in]-1,1[, \qquad \psi(t) = -\sum_{n=0}^{+\infty} \frac{1}{n+2} t^n,$$
 (III.2)

puis que, pour tout n dans \mathbb{N}^* ,

$$\varphi^{(n)}(0) = -\sum_{k=0}^{n-1} \frac{k!}{k+2} \binom{n-1}{k} \varphi^{(n-k-1)}(0).$$

Q 26. Conclure alors que

$$\forall t \in]-1,1[, \qquad \varphi(t) = \mathbf{e}\left(1 - \sum_{k=1}^{+\infty} b_k t^k\right). \tag{III.3}$$

III.B - Démonstration de l'inégalité de Carleman-Yang

Soit $(a_n)_{n\in\mathbb{N}^*}$ et $(c_n)_{n\in\mathbb{N}^*}$ deux suites de réels strictement positifs.

Q 27. Démontrer que

$$\sum_{n=1}^{+\infty} \left(\prod_{k=1}^n a_k\right)^{1/n} \leqslant \sum_{k=1}^{+\infty} c_k a_k \sum_{n=k}^{+\infty} \frac{1}{n} \left(\prod_{i=1}^n c_i\right)^{-1/n}.$$

 ${\bf Q}$ 28. En considérant $c_n=\frac{(n+1)^n}{n^{n-1}},$ en déduire l'inégalité de Carleman-Yang :

$$\sum_{n=1}^{+\infty} \left(\prod_{k=1}^n a_k\right)^{1/n} \leqslant \mathrm{e} \sum_{n=1}^{+\infty} \left(1 - \sum_{k=1}^{+\infty} \frac{b_k}{(n+1)^k}\right) a_n.$$

Q 29. Démontrer que, pour tout n dans \mathbb{N}^* , $b_n \geqslant 0$. En quoi l'inégalité précédente est-elle un raffinement de l'inégalité de Carleman ?

