ÉCOLES NORMALES SUPÉRIEURES ÉCOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2023

LUNDI 17 AVRIL 2023 08 h 00 - 12 h 00 FILIERE PSI MATHEMATIQUES (XUSR)

Durée: 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

NOTATIONS ET RAPPELS

- On notera \mathbb{R}_+ l'ensemble des réels positifs ou nuls et \mathbb{R}_+^* l'ensemble des réels strictement positifs.
- On rappelle que si $F \subset \mathbb{R}^n$ est un fermé borné et $f: F \to \mathbb{R}$ est continue, alors le minimum de f sur F est atteint, c'est-à-dire qu'il existe $x \in F$ tel que $f(x) \le f(y)$ pour tout $y \in F$.
- Soit E un espace vectoriel sur \mathbb{R} . On dit que $C \subset E$ est un ensemble convexe si pour tous $x, y \in C$ et tout $t \in [0,1]$ on a $(1-t)x + ty \in C$.

Pour $C \subset E$ convexe, une fonction $f: C \to \mathbb{R}$ est dite convexe, si pour tous x, y éléments de C et tout $t \in [0,1]$, on a $f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$. On dit que f est strictement convexe si cette inégalité est stricte pour $t \in]0,1[$ et $x \neq y$.

• Soient A et B deux ensembles et $f: A \times B \to \mathbb{R}$. On dit que f admet un point selle en $(a_*, b_*) \in A \times B$ si pour tout $(a, b) \in A \times B$ on a

$$f(a_*, b) \le f(a_*, b_*) \le f(a, b_*).$$

• Toutes les variables aléatoires seront supposées définies sur un espace probabilisé commun (Ω, \mathcal{F}, P)

Les parties I et II sont indépendantes.

I. Convexité et points selles

Soient m et n deux entiers positifs non nuls et E un espace vectoriel sur \mathbb{R} .

- (1) Soient $C \subset E$ un ensemble convexe. Soient f et g deux fonctions convexes de C dans \mathbb{R} .
 - (a) Montrer que f + g est convexe, et strictement convexe s'il l'une des deux fonctions f ou g est strictement convexe.
 - (b) On suppose f strictement convexe. Vérifier que le minimum de f est atteint sur C en au plus un point de C.
- (2) Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ une matrice de m lignes et n colonnes. On note $\langle u, v \rangle_{\mathbb{R}^n}$ le produit scalaire entre deux vecteurs u et v de \mathbb{R}^n et $\langle \mu, \nu \rangle_{\mathbb{R}^m}$ celui entre deux vecteurs μ et ν de \mathbb{R}^m .
 - (a) Montrer que pour tout $(x, \nu) \in \mathbb{R}^n \times \mathbb{R}^m$, on a

$$\langle Ax, \nu \rangle_{\mathbb{R}^m} = \langle x, A^\top \nu \rangle_{\mathbb{R}^n}$$

où A^{\top} désigne la matrice transposée de A.

- (b) En déduire que $\ker A \subset (\operatorname{Im} A^{\top})^{\perp}$ où E^{\perp} désigne l'orthogonal de E pour le produit scalaire sur \mathbb{R}^n pour tout sous-espace vectoriel E de \mathbb{R}^n .
- (c) Montrer que $\ker A = (\operatorname{Im} A^{\top})^{\perp}$
- (3) On considère un ouvert $U \subset \mathbb{R}^n, h: U \to \mathbb{R}$ une application \mathcal{C}^1 et $b \in \mathbb{R}^m$. On suppose qu'il existe $x_* \in U$ un minimum de h sur l'ensemble $V_b = \{x \in U \mid Ax + b = 0\}$.
 - (a) Montrer que pour tout $u \in \mathbb{R}^n$ tel que Au = 0 on a $\langle \nabla h(x_*), u \rangle_{\mathbb{R}^n} = 0$ où $\nabla h(x)$ désigne le gradient de h en x.
 - (b) Montrer l'existence de $\nu_* \in \mathbb{R}^m$ tel que $\nabla h(x_*) A^{\top} \nu_* = 0$.
 - (c) En déduire que l'application $L: U \times \mathbb{R}^m \to \mathbb{R}$ telle que $L(x,\nu) = h(x) \langle \nu, Ax + b \rangle_{\mathbb{R}^m}$ vérifie $\frac{\partial L}{\partial x_k}(x_*,\nu_*) = 0$ pour tout $1 \leq k \leq n$ où $\frac{\partial L}{\partial x_k}(x,\nu)$ désigne la dérivée partielle de L par rapport à la k-ième coordonnées de $x \in \mathbb{R}^n$.

(d) Conclure que si U est convexe, et h convexe sur U, alors L admet un point selle en (x_*, ν_*) , c'est-à-dire que l'on a

$$L(x_*, \nu) \le L(x_*, \nu_*) \le L(x, \nu_*)$$

pour tout $(x, \nu) \in U \times \mathbb{R}^m$.

II. Entropie et codage

Soient $\mathscr X$ un ensemble fini et $\boldsymbol p=(\boldsymbol p_x)_{x\in X}$ une loi de probabilité sur $\mathscr X$. On suppose que $\boldsymbol p$ charge tous les points de $\mathscr X$: $\boldsymbol p_x>0$ pour tout $x\in \mathscr X$. On appelle entropie de $\boldsymbol p$ la quantité

$$H(oldsymbol{p}) = -\sum_{x \in \mathscr{X}} oldsymbol{p}_x \ln{(oldsymbol{p}_x)}$$

On considère l'ensemble $Q_{\mathscr{X}} = \{ \boldsymbol{q} = (\boldsymbol{q}_x)_{x \in x} \in \mathbb{R}^{\mathscr{X}} \mid \forall x \in \mathscr{X}, \boldsymbol{q}_x \geq 0 \}$. Pour tous $\boldsymbol{q}, \boldsymbol{q}' \in Q_{\mathscr{X}}$ tels que $\boldsymbol{q}'_x > 0$ pour tout $x \in \mathscr{X}$, on définit :

$$\mathrm{KL}\left(\boldsymbol{q}, \boldsymbol{q}'\right) = \sum_{x \in \mathscr{X}} \varphi\left(\boldsymbol{q}_{x}/\boldsymbol{q}_{x}'\right) \boldsymbol{q}_{x}'$$

avec $\varphi: \mathbb{R}_+ \to \mathbb{R}$ définie par $\varphi(x) = x \ln(x) - x + 1$ pour x > 0 et prolongée en 0 par continuité.

- (4) (a) Préciser $\varphi(0)$.
 - (b) Vérifier que φ est continue strictement convexe positive et que $\varphi(x)=0$ si et seulement si x=1.
 - (c) Montrer que $Q_{\mathscr{X}}$ est convexe et que $\mathbf{q} \mapsto \mathrm{KL}(\mathbf{q}, \mathbf{q}')$ est strictement convexe positive et s'annule ssi $\mathbf{q} = \mathbf{q}'$.

Soit \mathcal{A} un ensemble fini. On appelle mot sur \mathcal{A} une suite finie d'éléments de \mathcal{A} , on le note $u=u_1\ldots u_n$ et n est la longueur du mot u, notée |u|. Le mot vide est noté ϵ , il est de longueur nulle. On note \mathcal{A}^* l'ensemble des mots sur \mathcal{A} et $\mathcal{A}^+=\mathcal{A}^*\setminus\{\epsilon\}$ l'ensemble des mots privé du mot vide.

On définit la concaténation $u \cdot v$ de deux mots $u, v \in \mathcal{A}^*$ par $u \cdot \epsilon = \epsilon \cdot u = u$ et $u \cdot v = u_1 \dots u_{|u|} v_1 \dots v_{|v|}$ si $u, v \in \mathcal{A}^+$. On dit que u est un préfixe de v si $v = u \cdot w$ pour $w \in \mathcal{A}^*$. Soient \mathscr{X} un ensemble fini non vide et $c : \mathscr{X} \to \{0,1\}^+$ une application injective. On dira que c est un code binaire sur \mathscr{X} . On suppose de plus que c est un code préfixe, c'est-à-dire que pour tous $x \neq y$ dans \mathscr{X} , c(x) n'est pas un préfixe de c(y).

- (5) On définit $\bar{c}: \mathscr{X} \to \{0,1\}^*$ tel que pour tout $x \in \mathscr{X}$, $c(x) = c(x)_1 \cdot \bar{c}(x)$ où $c(x)_1$ est le premier élément du mot c(x).
 - (a) Vérifier que pour tout $x \neq y \in \mathcal{X}$, si $c(x)_1 = c(y)_1$ alors $\bar{c}(x) \neq \bar{c}(y)$ et $\bar{c}(x)$ n'est pas un préfixe de $\bar{c}(y)$.
 - (b) Pour $a \in \{0,1\}$ on note $\mathscr{X}_a = \{x \in \mathscr{X} \mid c(x)_1 = a\}$. Montrer que si \mathscr{X}_a contient au moins deux éléments, alors la restriction de \bar{c} à \mathscr{X}_a est un code préfixe sur \mathscr{X}_a .
 - (c) En déduire que $\sum_{x \in \mathscr{X}} 2^{-|c(x)|} \le 1$. (Ind. : On pourra décomposer la somme en une somme sur \mathscr{X}_0 et \mathscr{X}_1 et raisonner par récurrence sur $L(c) = \max\{|c(x)| \mid x \in \mathscr{X}\}$.)

Soient $m{q} = \left(2^{-|c(x)|}\right)_{x \in \mathscr{X}}$ et X une variable aléatoire à valeurs dans \mathscr{X} de loi $m{p}$.

- (6) (a) Vérifier que $\ln(2)E(|c(X)|) = -\sum_{x \in \mathscr{X}} \boldsymbol{p}_x \ln{(\boldsymbol{q}_x)}$.
 - (b) En déduire que $E(|c(X)|) \ge \frac{H(\mathbf{p})}{\ln(2)}$. (Ind.: On pourra chercher à exprimer $\ln(2)E(|c(X)|)$ en fonction de $H(\mathbf{p})$ et $\mathrm{KL}(\mathbf{p}, \mathbf{q})$.)

Dans toute la suite I et J désignent deux ensembles finis.

- On considère $\alpha = (\alpha_i)_{i \in I} \in (\mathbb{R}_+^*)^I$ et $\beta = (\beta_j)_{j \in J} \in (\mathbb{R}_+^*)^J$ tels que $\sum_{i \in I} \alpha_i = \sum_{j \in J} \beta_j = 1$ si bien que α et β peuvent être considérés comme définissant deux lois de probabilités sur I et J.
- Dans la suite on notera

$$Q = \{ (\boldsymbol{q}_{ij})_{(i,j) \in I \times J} \in \mathbb{R}^{I \times J} \mid \boldsymbol{q}_{ij} \ge 0 \text{ pour tout } (i,j) \in I \times J \}$$

 et

$$F(\alpha,\beta) = \{ \boldsymbol{q} \in Q \mid \sum_{i' \in J} \boldsymbol{q}_{ij'} = \alpha_i \text{ et } \sum_{i' \in I} \boldsymbol{q}_{i'j} = \beta_j \text{ pour tout } (i,j) \in I \times J \}.$$

On notera p l'élément de $F(\alpha, \beta)$ défini par $p_{ij} = \alpha_i \beta_j > 0$ pour tout $(i, j) \in I \times J$.

- (7) Vérifier que $F(\alpha, \beta)$ est un ensemble convexe de l'espace vectoriel $E = \mathbb{R}^{I \times J}$.
- (8) Soient X_1 et X_2 deux variables aleatoires telles que X_1 est à valeurs dans I et X_2 à valeurs dans J.
 - (a) Vérifier que si $\mathbf{q} \in F(\alpha, \beta)$, alors $\sum_{i \in I} \sum_{j \in J} \mathbf{q}_{ij} = 1$.
 - (b) On suppose que $P(X_1=i,X_2=j)={m q}_{ij}$ avec ${m q}\in F(\alpha,\beta)$. Calculer la loi de X_1 et celle de X_2 en fonction de α et β .
 - (c) Que dire de X_1 et X_2 lorsque q = p?

Soient $C = (C_{ij})_{(i,j) \in I \times J} \in \mathbb{R}_+^{I \times J}$ et $\epsilon > 0$. On considère $J_{\epsilon} : Q \to \mathbb{R}$ définie par

$$J_{\epsilon}(\boldsymbol{q}) = \sum_{ij} \boldsymbol{q}_{ij} C_{ij} + \epsilon \operatorname{KL}(\boldsymbol{q}, \boldsymbol{p})$$

où $\mathrm{KL}(\boldsymbol{q},\boldsymbol{p})$ est défini dans la partie précédente en prenant $\mathscr{X}=I\times J$.

- (9) Montrer que J_{ϵ} est strictement convexe sur Q.
- (10) (a) Vérifier que $F(\alpha, \beta)$ est un fermé borné de $\mathbb{R}^{I \times J}$.
 - (b) Montrer qu'il existe un unique $q(\epsilon) \in Q$ minimisant J_{ϵ} sur $F(\alpha, \beta)$.
 - (c) En considérant un contre-exemple simple, montrer que l'unicité n'est plus vraie si on suppose que $\epsilon=0$.
- (11) (a) Vérifier que $\mathbf{q}(\epsilon)_{ij} > 0$ pour tout $(i,j) \in I \times J$ (Ind: On pourra raisonner par l'absurde et considérer pour tout $t \in]0,1[$ $\mathbf{q}(\epsilon,t) = (1-t)\mathbf{q}(\epsilon) + t\mathbf{p}$ puis observer le comportement de $\varphi(x)$ au voisinage de x = 0).
 - (b) Montrer que ceci n'est plus vrai si on suppose que $\epsilon = 0$.

On définit $Q_{>0}=\left(\mathbb{R}_+^*\right)^{I\times J}$ et $\mathscr{L}:Q_{>0}\times\left(\mathbb{R}^I\times\mathbb{R}^J\right)\to\mathbb{R}$ défini par

$$\mathscr{L}(\boldsymbol{q},(f,g)) = J_{\epsilon}(\boldsymbol{q}) + \sum_{i \in I} f_i(\alpha_i - \sum_{j \in J} \boldsymbol{q}_{ij}) + \sum_{j \in J} g_j(\beta_j - \sum_{i \in I} \boldsymbol{q}_{ij})$$

- (12) (a) Vérifier que $Q_{>0}$ est un ouvert convexe $\mathbb{R}^{I\times J}$.
 - (b) Montrer qu'il existe $(f(\epsilon), g(\epsilon)) \in \mathbb{R}^I \times \mathbb{R}^J$ tel que $\mathscr{L}(\boldsymbol{q}(\epsilon), (f(\epsilon), g(\epsilon)))$ est un point selle de \mathscr{L} . (Indication: On pourra identifier $\mathbb{R}^{I \times J}$ avec \mathbb{R}^n et $\mathbb{R}^I \times \mathbb{R}^J$ avec \mathbb{R}^m pour n cardinal de $I \times J$ et m somme des cardinaux de I et J puis utiliser la question 3 de la partie I.)

- (13) (a) Montrer que pour tout $(f,g) \in \mathbb{R}^I \times \mathbb{R}^J$, le minimum de $\mathbf{q} \mapsto \mathscr{L}(\mathbf{q},(f,g))$ sur $Q_{>0}$ est atteint en $\mathbf{q}(f,g)_{ij} = \mathrm{e}^{(f_i+g_j-C_{ij})/\epsilon}\mathbf{p}_{ij}$.
 - (b) Calculer la valeur de $G(f,g) = \mathcal{L}(\boldsymbol{q}(f,g),(f,g))$.
 - (c) Vérifier que G est concave sur $\mathbb{R}^I \times \mathbb{R}^J$.
- (14) Vérifier que si $f_*: \mathbb{R}^J \to \mathbb{R}^I$ et $g_*: \mathbb{R}^I \to \mathbb{R}^J$ sont définies par

$$f_*(g)_i = -\epsilon \ln \left(\sum_{j \in J} e^{(g_j - C_{ij})/\epsilon} \beta_j \right) \text{ et } g_*(f)_j = -\epsilon \ln \left(\sum_{i \in I} e^{(f_i - C_{ij})/\epsilon} \alpha_i \right)$$

alors pour tout $(f,g) \in \mathbb{R}^I \times \mathbb{R}^J$, on a $\frac{\partial G}{\partial f_i}(f_*(g),g) = \frac{\partial G}{\partial g_j}(f,g_*(f)) = 0$ pour tout $(i,j) \in I \times J$.

Soit $(f^0, g^0) \in \mathbb{R}^{I \times J}$. Pour tout $k \geq 0$, on considère

$$g^{k+1} = g_* (f^k)$$
 et $f^{k+1} = f_* (g^{k+1})$

- (15) Montrer que la suite $(G(f^k, g^k))_{k>0}$ est croissante.
- (16) On suppose qu'il existe $f^{\infty}=(f_{i}^{\infty})_{i\in I}$ et $g^{\infty}=\left(g_{j}^{\infty}\right)_{j\in J}$ tel que $\left|f_{i}^{k}-f_{i}^{\infty}\right|\to 0$ et $\left|g_{j}^{k}-g_{j}^{\infty}\right|\to 0$ pour tous $i\in I$ et $j\in J$. On note $G_{*}=\sup\{G(f,g)\mid (f,g)\in\mathbb{R}^{I}\times\mathbb{R}^{J}\}.$
 - (a) Montrer que $G(f^{\infty}, g^{\infty}) = G_*$.
 - (b) Montrer que $G(f(\epsilon), g(\epsilon)) = G_*$
 - (c) Montrer qu'il existe une constante $a \in \mathbb{R}$ telle $f(\epsilon)_i = f_i^{\infty} + a$ et $g(\epsilon)_j = g_j^{\infty} a$ pour tout $(i,j) \in I \times J$.
 - (d) En déduire que $q(f^k, g^k) \to q(\epsilon)$.