

ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARIS, TÉLÉCOM PARIS, MINES PARIS, MINES SAINT-ÉTIENNE, MINES NANCY, IMT ATLANTIQUE, ENSAE PARIS, CHIMIE PARISTECH - PSL.

Concours Mines-Télécom, Concours Centrale-Supélec (Cycle International).

CONCOURS 2023

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice ou de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES II - PSI

L'énoncé de cette épreuve comporte 6 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 3.0 France. Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.

1 Nombre de points fixes d'une permutation.

Soit n un entier naturel non nul. On note S_n l'ensemble des permutations de l'intervalle entier $[1, n] = \{1, 2, \dots, n\}$, c'est-à-dire des bijections de [1, n] vers lui-même. Si $\sigma \in S_n$ est une permutation, on appelle **point fixe** de σ tout entier $i \in [1, n]$ tel que $\sigma(i) = i$.

Une permutation $\sigma \in \mathcal{S}_n$ est appelée un **dérangement** si elle n'a aucun point fixe. Pour tout $n \geq 1$, on note d_n le nombre de dérangements de l'intervalle entier [1, n]. Par convention, on pose $d_0 = 1$.

On munit l'ensemble fini S_n de la probabilité uniforme notée P_n . Sur l'espace probabilisé fini (S_n, P_n) , on définit la variable aléatoire X_n telle que, pour tout $\sigma \in S_n$, $X_n(\sigma)$ est le nombre de points fixes de la permutation σ .

On introduit enfin la série entière $\sum_{n\geq 0} \frac{d_n}{n!} x^n$, dont le rayon de convergence est noté R, et dont la somme sur l'intervalle de convergence]-R,R[est notée s:

$$\forall x \in]-R, R[\qquad s(x) = \sum_{n=0}^{+\infty} \frac{d_n}{n!} x^n.$$

- $1 \triangleright \text{Rappeler le cardinal de } \mathcal{S}_n$. En déduire que $R \ge 1$.
- **2** ▷ Pour $k \in [0, n]$, montrer que le nombre de permutations de [1, n] ayant exactement k points fixes est $\binom{n}{k} d_{n-k}$.

En déduire que
$$P_n(X_n = k) = \frac{d_{n-k}}{k!(n-k)!}$$
.

3 ▷ Montrer que

$$\forall x \in]-1,1[$$
 $s(x) e^x = \frac{1}{1-x}.$

En déduire que R=1.

- **4** ▷ En partant de la relation $(1-x)s(x) = e^{-x}$ pour $x \in]-1, 1[$, exprimer $\frac{d_n}{n!}$ pour n entier naturel, sous la forme d'une somme.
- $\mathbf{5} \triangleright \text{Montrer que la loi de la variable aléatoire } X_n$ est donnée par

$$\forall k \in [0, n]$$
 $P_n(X_n = k) = \frac{1}{k!} \sum_{i=0}^{n-k} \frac{(-1)^i}{i!}$.

6 \triangleright Sur l'espace probabilisé fini (S_n, P_n) , on définit, pour tout $i \in [1, n]$, la variable aléatoire U_i telle que, pour tout $\sigma \in S_n$, on ait $U_i(\sigma) = 1$ si $\sigma(i) = i$, et $U_i(\sigma) = 0$ sinon.

Montrer que U_i suit une loi de Bernoulli de paramètre $\frac{1}{n}$.

Montrer que, si $i \neq j$, la variable U_iU_j suit une loi de Bernoulli dont on précisera le paramètre.

- 7 ▷ Exprimer X_n à l'aide des U_i , $1 \le i \le n$. En déduire l'espérance $\mathrm{E}(X_n)$ et la variance $\mathrm{V}(X_n)$.
- $\mathbf{8} \triangleright \text{Dans}$ cette question, on fixe un entier naturel k. Déterminer

$$y_k = \lim_{n \to +\infty} P_n(X_n = k) .$$

Soit Y une variable aléatoire sur un espace probabilisé (Ω, \mathcal{A}, P) , à valeurs dans \mathbf{N} , et vérifiant

$$\forall k \in \mathbf{N} \qquad P(Y=k) = y_k \ .$$

Reconnaître la loi de Y.

9 \triangleright On note G_{X_n} et G_Y les fonctions génératrices respectives des variables X_n et Y de la question précédente. Exprimer $G_{X_n}(s)$ sous forme de somme, pour s réel, et vérifier que

$$\forall s \in \mathbf{R}$$
 $\lim_{n \to +\infty} G_{X_n}(s) = G_Y(s)$.

2 Convergence en variation totale

Dans la suite du problème, on appelle distribution (de probabilités) sur N toute application $x \colon \mathbf{N} \to \mathbf{R}_+$ telle que

$$\sum_{k=0}^{+\infty} x(k) = 1 .$$

On note $\mathcal{D}_{\mathbf{N}}$ l'ensemble des distributions de probabilités sur \mathbf{N} .

Si x et y sont deux distributions sur \mathbb{N} , on définit la **distance en variation** totale entre x et y par

$$d_{VT}(x,y) = \frac{1}{2} \sum_{k=0}^{+\infty} |x(k) - y(k)|.$$

10 \triangleright Soient x, y, z trois distributions sur N. Prouver les propriétés :

$$0 \le d_{VT}(x,y) \le 1 ;$$

$$d_{VT}(x,y) = 0 \iff x = y ;$$

$$d_{VT}(y,x) = d_{VT}(x,y) ;$$

$$d_{VT}(x,z) \le d_{VT}(x,y) + d_{VT}(y,z) .$$

Si X est une variable aléatoire à valeurs dans \mathbf{N} , définie sur un espace probabilisé (Ω, \mathcal{A}, P) , on note p_X la distribution de probabilités de X. Ainsi, p_X est l'application de \mathbf{N} vers \mathbf{R}_+ définie par

$$\forall k \in \mathbf{N} \qquad p_X(k) = P(X = k) .$$

Il est clair que $p_X \in \mathcal{D}_{\mathbf{N}}$.

En particulier, si λ est un réel strictement positif, on appelle **distribution** de Poisson de paramètre λ l'application $\pi_{\lambda} \colon \mathbf{N} \to \mathbf{R}_{+}$ telle que

$$\forall k \in \mathbf{N} \qquad \pi_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \ .$$

- **11** ▷ Soient X et Y deux variables de Bernoulli, ayant respectivement pour paramètres $\lambda \in]0,1[$ et $\mu \in]0,1[$. Calculer $d_{VT}(p_X,p_Y)$.
- 12 ▷ Soit X une variable de Bernoulli de paramètre $\lambda \in]0,1[$. Montrer que

$$d_{VT}(p_X, \pi_\lambda) = \lambda (1 - e^{-\lambda}).$$

En déduire que

$$d_{VT}(p_X, \pi_\lambda) \leq \lambda^2$$
.

On considère de nouveau les variables aléatoires X_n introduites dans la partie 1. Les questions 8. et 9. semblent montrer une certaine "convergence" des lois des variables X_n vers la loi de Poisson de paramètre 1. Le but de la fin de cette partie est de montrer que

$$d_{VT}(p_{X_n}, \pi_1) \quad \underset{n \to +\infty}{\longrightarrow} \quad 0,$$

et que cette convergence est assez rapide.

13 ▷ Vérifier la relation, pour tout n entier naturel non nul,

$$2 d_{VT}(p_{X_n}, \pi_1) = \sum_{k=0}^{n} \frac{1}{k!} \left| \sum_{i=n-k+1}^{+\infty} \frac{(-1)^i}{i!} \right| + e^{-1} \sum_{k=n+1}^{+\infty} \frac{1}{k!}.$$

14 \triangleright Pour n entier naturel, on pose $r_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$. Prouver la majoration

$$r_n \le \frac{1}{(n+1)!} \sum_{k=0}^{+\infty} \frac{1}{(n+2)^k}$$
.

En déduire un équivalent simple de r_n lorsque n tend vers $+\infty$.

15 ▷ En continuant de majorer le second membre de l'égalité de la question 13., établir l'estimation

$$d_{VT}(p_{X_n}, \pi_1) \underset{n \to +\infty}{=} O\left(\frac{2^n}{(n+1)!}\right).$$

On pourra faire intervenir des coefficients binomiaux.

3 Autres estimations de distances en variation totale

Si x et y sont deux distributions de probabilités sur \mathbf{N} , on définit l'application $x*y:\mathbf{N}\to\mathbf{R}_+$ par

$$\forall k \in \mathbf{N}$$
 $(x * y)(k) = \sum_{i=0}^{k} x(i) y(k-i) = \sum_{i+j=k} x(i) y(j)$.

16 ▷ Montrer que x * y est une distribution sur **N**.

17 ▷ Soient X et Y deux variables aléatoires indépendantes, à valeurs dans \mathbb{N} , définies sur un même espace probabilisé (Ω, \mathcal{A}, P) . Prouver la relation

$$p_{X+Y} = p_X * p_Y .$$

18 ▷ Soient $(x, y, u, v) \in (\mathcal{D}_{\mathbf{N}})^4$. Montrer que, pour tout k entier naturel,

$$\left| (x*y)(k) - (u*v)(k) \right| \leq \sum_{i+j=k} y(j) \, \left| x(i) - u(i) \right| + \sum_{i+j=k} u(i) \, \left| y(j) - v(j) \right| \, .$$

19 ⊳ Avec les notations de la question précédente, établir l'inégalité

$$d_{VT}(x * y, u * v) \le d_{VT}(x, u) + d_{VT}(y, v).$$

 ${\bf 20} \, \rhd \,$ Soit U une variable binomiale de paramètres $n \in {\bf N}^*$ et $\lambda \in \,]0,1[$. Prouver l'inégalité

$$d_{VT}(p_U, \pi_{n\lambda}) \le n \lambda^2$$
.

21 \triangleright Soit α un réel strictement positif. Pour tout entier naturel n tel que $n > \lfloor \alpha \rfloor$, on note B_n une variable binomiale de paramètres n et $\frac{\alpha}{n}$. Pour tout k entier naturel, déterminer

$$\lim_{n\to+\infty}P(B_n=k)\ .$$

On pourra utiliser la question précédente.

 ${\bf 22} \rhd$ Soient α et β deux réels strictement positifs. En utilisant les résultats et les méthodes qui précèdent, montrer que

$$d_{VT}(\pi_{\alpha}, \pi_{\beta}) \leq |\beta - \alpha|$$
.

Fin du problème