

Mathématiques 2

PSI C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Objectif

Ce problème propose d'étudier quelques propriétés d'un opérateur intégral U défini sur un espace préhilbertien réel E. Cet espace et son produit scalaire sont introduits dans la partie II et l'opérateur U est étudié dans la partie III. Dans la partie IV, on s'intéresse à l'étude d'une famille d'équations différentielles à un paramètre pour lesquelles on recherche des solutions développables en séries entières. Enfin, la partie V fait le lien entre les vecteurs propres de l'endomorphisme U et les solutions des équations différentielles trouvées dans de la partie IV.

Liens entre les différentes parties

- Les parties I et II sont très largement indépendantes à l'exception de la définition de la fonction k_x .
- La partie III utilise les résultats de la partie II ainsi que la condition d'appartenance à E établie dans la partie I.
- La partie IV fait ponctuellement appel à l'espace E défini et étudié dans les parties I et II. Elle est indépendante de la partie III.
- La partie V utilise les résultats des parties III et IV ainsi que le résultat de la question 3.

Notations

On note E l'ensemble des fonctions f continues de \mathbb{R}_+^* dans \mathbb{R} telles que l'intégrale $\int\limits_0^{+\infty} f^2(t) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$ converge.

 $\text{Pour }\alpha\in\mathbb{R}_{+}^{*},\,\text{on note }p_{\alpha}\text{ la fonction }\begin{vmatrix}\mathbb{R}_{+}^{*}&\to&\mathbb{R}\\t&\mapsto&t^{\alpha}\end{vmatrix}.$

I Préliminaires : étude de quelques éléments de E

I.A - Des fonctions de E utiles pour la suite

Q 1. Montrer que, pour tout $\alpha \in \mathbb{R}_+^*$, p_{α} appartient à E.

Q 2. Soit P une fonction polynomiale non identiquement nulle à coefficients réels. Montrer que la restriction de P à \mathbb{R}_+^* appartient à E si et seulement si P(0) = 0.

Q 3. Soient a et b deux nombres réels. Montrer que la fonction $\begin{vmatrix} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & a e^t + b \end{vmatrix}$ appartient à E si et seulement si a = b = 0.

 $\mathbf{Q} \ \mathbf{4.} \qquad \text{Montrer que, pour tout } x \in \mathbb{R}_+^*, \text{ la fonction } \left| \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & (\mathrm{e}^t - 1)^2 \ \frac{\mathrm{e}^{-t}}{t} \end{array} \right| \quad \text{est intégrable sur }]0, x].$

Q 5. Pour tout $x \in \mathbb{R}_+^*$ et tout $t \in \mathbb{R}_+^*$, on note $k_x(t) = \mathrm{e}^{\min(x,t)} - 1$ où $\min(x,t)$ désigne le plus petit des réels x et t. Représenter graphiquement la fonction k_x . Montrer que k_x appartient à E.

I.B – Une condition suffisante d'appartenance à E

Dans cette sous-partie, on suppose que f est une fonction de \mathbb{R}^*_{\perp} dans \mathbb{R} de classe \mathcal{C}^1 vérifiant

$$\left\{ \begin{aligned} &\lim_{x\to 0} f(x) = 0, \\ &\exists \, C > 0 \ ; \ \forall x > 0, \quad |f'(x)| \ \leqslant C \frac{\mathrm{e}^{x/2}}{\sqrt{x}}. \end{aligned} \right.$$

 $\mathbf{Q} \ \mathbf{6.} \qquad \text{Pour } x \in \mathbb{R}_+^*, \text{ on pose } \Phi(x) = \frac{4\sqrt{x}\mathrm{e}^{x/2}}{1+x} - \int\limits_0^x \frac{\mathrm{e}^{t/2}}{\sqrt{t}} \,\mathrm{d}t. \text{ Montrer que } \Phi \text{ est de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}_+^*, \text{ que } t = 0$

 $\lim_{x \to 0} \Phi(x) = 0$ et que, pour tout x > 0, $\Phi'(x) \ge 0$. En déduire que $\Phi(x) \ge 0$ pour tout x > 0.

Q 7. Montrer que, pour tout x > 0, $|f(x)| \le 4C \frac{\sqrt{x}e^{x/2}}{1+x}$.

Q 8. En déduire que $f \in E$.

II Structure préhilbertienne de E

Q 9. Montrer que, si f et g sont deux fonctions de E, alors l'intégrale $\int_{0}^{\infty} f(t)g(t) \frac{e^{-t}}{t} dt$ est absolument convergente.

Q 10. En déduire que E est un sous-espace vectoriel de l'espace vectoriel $\mathcal{C}(\mathbb{R}_+^*, \mathbb{R})$ des fonctions continues sur \mathbb{R}_+^* à valeurs dans \mathbb{R} .

Pour toutes fonctions $f \in E$ et $g \in E$, on pose, $\langle f \mid g \rangle = \int_{0}^{+\infty} f(t)g(t) \frac{\mathrm{e}^{-t}}{t} dt$.

 ${f Q}$ 11. Montrer que l'on définit ainsi un produit scalaire sur E.

La norme $\|\cdot\|$ associée à ce produit scalaire est donc définie pour toute fonction $f \in E$ par

$$\|f\| = \left(\int\limits_0^{+\infty} f^2(t) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t\right)^{1/2}.$$

 $\mathbf{Q} \ \mathbf{12.} \quad \text{ Montrer que } \lim_{x \to 0} \lVert k_x \rVert = 0. \text{ On rappelle que, pour tout } x > 0, \ k_x(t) = \mathrm{e}^{\min(x,t)} - 1.$

Q 13. Montrer que, pour tout $k \in \mathbb{N}$, $\int_{0}^{+\infty} t^{k} e^{-t} dt = k!$.

Q 14. On rappelle que les fonctions p_{α} ont été définies dans les notations en tête de sujet. La famille $(p_n)_{n \in \mathbb{N}^*}$ est-elle une famille orthogonale de E?

III Un opérateur sur E

À chaque fonction $f \in E$, on associe la fonction U(f) définie pour tout x > 0 par

$$U(f)(x) = \langle k_x \mid f \rangle = \int\limits_0^{+\infty} (\mathrm{e}^{\min(x,t)} - 1) f(t) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t.$$

III.A -

Q 15. À l'aide de l'inégalité de Cauchy-Schwarz, montrer que pour toute fonction $f \in E$,

$$\lim_{\substack{x \to 0 \\ x > 0}} U(f)(x) = 0.$$

Q 16. Montrer que pour toute fonction $f \in E$ et pour tout x > 0,

$$U(f)(x) = \int_{0}^{x} (1 - e^{-t}) \frac{f(t)}{t} dt + (e^{x} - 1) \int_{x}^{+\infty} f(t) \frac{e^{-t}}{t} dt.$$

Q 17. Soit $f \in E$. Montrer que U(f) est de classe \mathcal{C}^1 sur \mathbb{R}^*_{\perp} et vérifie, pour tout x > 0,

$$(U(f))'(x) = e^x \int_{a}^{+\infty} f(t) \frac{e^{-t}}{t} dt.$$

Dans la suite, pour alléger les notations, la dérivée de la fonction U(f) est notée U(f)'.

Q 18. Soit $f \in E$. Montrer que U(f) est de classe \mathcal{C}^2 sur \mathbb{R}_+^* et que la fonction U(f) est solution sur \mathbb{R}_+^* de l'équation différentielle

$$y'' - y' = -\frac{f(x)}{x}. ag{III.1}$$

Q 19. Montrer que pour tout $f \in E$ et pour tout x > 0,

$$|U(f)'(x)|\leqslant \mathrm{e}^x\|f\|\left(\int\limits^{+\infty}_{}\frac{\mathrm{e}^{-t}}{t}\,\mathrm{d}t\right)^{1/2}\leqslant \|f\|\frac{\mathrm{e}^{x/2}}{\sqrt{x}}.$$

Q 20. Déduire de ce qui précède que U est un endomorphisme de E et que, pour tout $f \in E$ et tout x > 0,

$$|U(f)(x)|\leqslant 4\|f\|\frac{\sqrt{x}\operatorname{e}^{x/2}}{1+x}$$

Q 21. En déduire que

$$||U(f)|| \le 4||f||.$$

 \mathbf{Q} 22. Montrer que U est injectif.

Q 23. L'endomorphisme U est-il surjectif?

III.B – On fixe deux fonctions f et g de E. Pour x > 0, on pose

$$F(x) = -U(f)'(x)e^{-x}.$$

Q 24. Vérifier que F est une primitive de $x \mapsto f(x) \frac{e^{-x}}{x}$ sur l'intervalle \mathbb{R}_+^* .

Q 25. Montrer que pour tout x > 0, $|F(x)U(g)(x)| \le \frac{4||f|||g||}{1+x}$.

Q 26. Montrer que pour tout $x \in]0,1], |F(x)| \leq ||f|| \left(e^{-1} - \ln(x)\right)^{1/2}$. On pourra utiliser la question 19.

Q 27. Montrer l'existence et calculer les valeurs des limites en 0 et en $+\infty$ de la fonction $t \mapsto F(t)U(g)(t)$.

Q 28. Montrer que $\langle f \mid U(g) \rangle = \int_{0}^{+\infty} U(f)'(t)U(g)'(t)e^{-t} dt$.

Q 29. En déduire que $\langle f \mid U(g) \rangle = \langle U(f) \mid g \rangle$.

IV Solutions d'une équation différentielle développables en série entière

Pour $p\in\mathbb{R}^*$ on note (E_p) l'équation différentielle sur \mathbb{R}_+^*

$$(E_p): x(y'' - y') + py = 0.$$

Q 30. Soient $p \in \mathbb{R}^*$ et $(a_n)_{n \in \mathbb{N}}$ une suite de nombres réels. On suppose que la série entière $\sum_{n \geq 0} a_n x^n$ a un

rayon de convergence infini. Montrer que la fonction $f:x\mapsto \sum_{n=0}^{+\infty}a_nx^n$ est solution de (E_p) si et seulement si

$$\begin{cases} a_0=0,\\ n(n+1)a_{n+1}=(n-p)a_n, & \forall n\in \mathbb{N}^*. \end{cases}$$

IV.A - Recherche de solutions polynomiales

Q 31. Montrer que (E_p) possède des solutions polynomiales non identiquement nulles si et seulement si $p \in \mathbb{N}^*$. Montrer qu'alors, les solutions polynomiales non nulles de (E_p) sont de degré p et appartiennent à l'espace vectoriel E.

On ne demande pas de déterminer explicitement les solutions polynomiales lorsqu'elles existent.

Dans la suite de cette sous-partie, on fixe $p \in \mathbb{N}^*$ et on considère un polynôme $P \in \mathbb{R}[X]$ tel que la fonction polynomiale $x \mapsto P(x)$ soit solution de l'équation (E_p) . L'objectif est de déterminer une expression simple de P en fonction du paramètre p.

Pour tout $x \in \mathbb{R}$, on note $h(x) = e^{-x}P(x)$.

Q 32. Montrer que la fonction h est solution de l'équation différentielle x(y'' + y') + py = 0 sur \mathbb{R}^*_{\perp} .

Q 33. Justifier que la fonction h est développable en série entière sur \mathbb{R} .

On note $(b_n)_{n\in\mathbb{N}}$ la suite des coefficients du développement en série entière de h. Ainsi, pour tout $x\in\mathbb{R}$, $h(x)=\sum_{n=0}^{+\infty}b_nx^n$. On peut montrer, de la même façon qu'à la question 30 (cette démonstration n'est pas demandée), que ces coefficients vérifient

$$\begin{cases} b_0=0,\\ n(n+1)b_{n+1}=-(n+p)b_n, & \forall n\in \mathbb{N}^*. \end{cases}$$

Q 34. Établir que, pour tout $n \in \mathbb{N}^*$, $b_n = \frac{(-1)^{n-1}(n+p-1)!}{p! \, n! \, (n-1)!} b_1$.

Q 35. On pose $g_p(x) = x^{p-1}e^{-x}$. Justifier que $g_p^{(p)}$ est développable en série entière et déduire de la question 34 que, pour tout $x \in \mathbb{R}$,

$$P(x) = Cx e^x g_n^{(p)}(x)$$

où C est une constante réelle dont on précisera l'expression en fonction de b_1 et de p.

IV.B - Solutions développables en séries entières non polynomiales

Dans toute cette sous-partie, on fixe un réel p non nul et on suppose que $p \notin \mathbb{N}^*$.

Q 36. Justifier l'existence de suites $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ non identiquement nulles telles que la série entière $\sum_{n\geqslant 0}a_nx^n$

ait un rayon de convergence infini et telles que la fonction $x\mapsto \sum_{n=0}^{+\infty}a_nx^n$ soit solution de (E_p) .

On fixe une telle série entière et on pose pour x > 0,

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Q 37. Montrer qu'il existe un entier naturel q > p tel que, pour tout entier $n \ge q$,

$$|a_{n+1}|\geqslant \frac{|a_n|}{2(n+1)}.$$

Q 38. En déduire que, pour tout entier $n \geqslant q$, $|a_n| \geqslant \frac{q!|a_q|}{2^{n-q}n!}$.

Q 39. Montrer que la fonction $\psi : \begin{vmatrix} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \sum_{n=a}^{+\infty} |a_n| x^n \end{aligned}$ n'est pas un élément de E.

Q 40. En déduire enfin que la fonction f n'est pas un élément de E.

V Éléments propres de U

 ${f Q}$ 41. Le nombre réel 0 est-il valeur propre de U?

Q 42. Soit $\lambda \in \mathbb{R}^*$. On suppose que λ est valeur propre de U. Soit f un vecteur propre associé. Montrer que f est solution de l'équation différentielle $(E_{1/\lambda})$.

On suppose que f est développable en série entière sur \mathbb{R}_+^* , c'est-à-dire qu'il existe une série entière $\sum_{n\geqslant 0}a_nx^n$ de rayon de convergence infini telle que

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Q 43. Montrer que les seules valeurs propres possibles de U sont de la forme $\lambda = 1/p$ avec $p \in \mathbb{N}^*$.

Q 44. Soit P une solution polynomiale non nulle de (E_p) . Démontrer que la fonction pU(P)-P vérifie sur \mathbb{R}^*_{\perp} l'équation différentielle y''-y'=0.

Q 45. Montrer que P est un vecteur propre de U pour la valeur propre 1/p.

Q 46. Pour tout entier $p \in \mathbb{N}^*$ et tout x > 0, on pose $P_p(x) = x \mathrm{e}^x g_p^{(p)}(x)$, où $g_p(x) = x^{p-1} \mathrm{e}^{-x}$. On rappelle que P_p est une fonction polynomiale de degré p et que $P_p \in E$. Montrer que les polynômes P_p sont deux à deux orthogonaux dans E.

