

Mathématiques 2

TSI

202

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Notations et rappels

— Pour n et p deux entiers naturels supérieurs ou égaux à 1, $\mathcal{M}_{n,p}(\mathbb{R})$ désigne l'espace vectoriel des matrices à n lignes et p colonnes à coefficients réels. $\mathcal{M}_n(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées de taille n et I_n la matrice identité d'ordre n.

Si $M \in \mathcal{M}_n(\mathbb{R})$, on note $[M]_{i,j}$ le coefficient situé sur la *i*-ème ligne et la *j*-ème colonne de M.

Si $(\lambda_1,...,\lambda_n) \in \mathbb{R}^n$, on note diag $(\lambda_1,...,\lambda_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont $\lambda_1,...,\lambda_n$.

— Base de $\mathcal{M}_n(\mathbb{R})$

Pour tout $(i,j) \in [\![1,n]\!]^2$, on note $E_{i,j}^{(n)}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf le coefficient situé sur la i-ème ligne et la j-ème colonne qui vaut 1. On admet que $(E_{i,j}^{(n)})_{(i,j)\in[\![1,n]\!]^2}$ est une base de $\mathcal{M}_n(\mathbb{R})$.

Matrices blocs

Si n_1 et n_2 sont deux entiers naturels non nuls tels que $n_1+n_2=n$, toute matrice $M\in\mathcal{M}_n(\mathbb{R})$ peut s'écrire sous la forme $M=\left(\frac{M_1\ |\ M_2}{M_3\ |\ M_4}\right)$ où $M_1\in\mathcal{M}_{n_1}(\mathbb{R}),\ M_2\in\mathcal{M}_{n_1,n_2}(\mathbb{R}),\ M_3\in\mathcal{M}_{n_2,n_1}(\mathbb{R})$ et $M_4\in\mathcal{M}_{n_2}(\mathbb{R}).$

Si $N = \left(\frac{N_1 \mid N_2}{N_3 \mid N_4}\right)$ est une décomposition du même type, on admet que le produit matriciel MN s'effectue selon la même formule que le produit habituel en remplaçant les coefficients par des blocs :

$$MN = \left(\frac{M_1N_1 + M_2N_3 \mid M_1N_2 + M_2N_4}{M_3N_1 + M_4N_3 \mid M_3N_2 + M_4N_4} \right)$$

— Polynômes matriciels

Si $M \in \mathcal{M}_n(\mathbb{R})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel k, $M^{k+1} = MM^k$.

 $\mathbb{R}[X]$ désigne l'ensemble des polynômes à coefficients réels et $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n.

Si
$$\Pi = \sum_{k=0}^d a_k X^k \in \mathbb{R}[X]$$
 et si $M \in \mathcal{M}_n(\mathbb{R})$, on note $\Pi(M)$ la matrice $\sum_{k=0}^d a_k M^k$ de $\mathcal{M}_n(\mathbb{R})$.

On dit alors que $\Pi(M)$ est un polynôme matriciel en M.

Enfin, on admet que, si $(\Pi_1, \Pi_2) \in \mathbb{R}[X]^2$ et $M \in \mathcal{M}_n(\mathbb{R})$, alors $(\Pi_1 \times \Pi_2)(M) = \Pi_1(M) \times \Pi_2(M)$.

Définition et objectifs du problème

On définit le commutant C_A d'une matrice $A\in \mathcal{M}_n(\mathbb{R})$ par

$$C_A = \left\{ M \in \mathcal{M}_n(\mathbb{R}) \mid AM = MA \right\}.$$

L'objectif de la première partie est d'expliciter le commutant de certaines matrices de $\mathcal{M}_n(\mathbb{R})$, notamment dans le cas où n=3. La deuxième partie aborde l'étude d'une suite récurrente linéaire d'ordre 3 à coefficients constants. Seuls les résultats du I.B.3 sont utilisés dans la partie II.

Le candidat mentionnera les résultats obtenus à l'aide d'une calculatrice. Dans ce cas, aucune justification complémentaire n'est attendue.

I Commutant d'une matrice

I.A - Propriétés générales

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ et P une matrice inversible de $\mathcal{M}_n(\mathbb{R}).$

- **Q 1.** Montrer que C_A est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
- **Q 2.** Montrer que, si M et N appartiennent à C_A , alors leur produit MN appartient à C_A .
- **Q 3.** Montrer que si M appartient à C_A , alors, pour tout entier naturel k, M^k appartient à C_A .
- **Q 4.** Déduire de la question précédente que, si $\Pi \in \mathbb{R}[X]$, alors $\Pi(A) \in C_A$.

On note $A' = P^{-1}AP$.

Q 5. Montrer que M appartient à C_A si et seulement si $M' = P^{-1}MP$ appartient à $C_{A'}$.

On définit les deux applications Φ et Ψ par

$$\Phi: \begin{vmatrix} C_A & \to & C_{A'} \\ M & \mapsto & P^{-1}MP \end{vmatrix} \quad \text{ et } \quad \Psi: \begin{vmatrix} C_{A'} & \to & C_A \\ M & \mapsto & PMP^{-1} \end{vmatrix}$$

- **Q 6.** Justifier que Φ et Ψ sont des applications linéaires.
- **Q 7.** Calculer $\Phi \circ \Psi$ et $\Psi \circ \Phi$.
- **Q 8.** Établir que Φ et Ψ sont des isomorphismes.

I.B - Quelques exemples en dimension 3

I.B.1) Premier exemple

On considère la matrice $A = \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$.

- **Q 9.** Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et expliciter une matrice P_1 inversible et une matrice D diagonale telles que $A=P_1DP_1^{-1}$.
- **Q 10.** Montrer qu'une matrice M' de $\mathcal{M}_3(\mathbb{R})$ appartient à C_D si et seulement s'il existe trois réels a, b et c tels que

$$M' = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}.$$

- **Q 11.** En déduire une base de C_D faisant intervenir certaines des matrices $E_{i,j}^{(3)}$.
- ${f Q}$ 12. En utilisant la question 8, déterminer une base de C_A . Quelle est la dimension de C_A ?

I.B.2) Deuxième exemple

On considère la matrice $B=\begin{pmatrix}7&2&-2\\2&4&-1\\-2&-1&4\end{pmatrix}$.

- **Q 13.** Justifier sans calcul que B est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et expliciter une matrice P_2 inversible et une matrice Δ diagonale vérifiant $[\Delta]_{3,3}=9$ telles que $B=P_2\Delta P_2^{-1}$.
- **Q 14.** Montrer qu'une matrice M' de $\mathcal{M}_3(\mathbb{R})$ appartient à C_{Δ} si et seulement s'il existe cinq réels $a,\,b,\,c,\,d$ et e tels que

$$M' = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}.$$

 ${\bf Q}$ 15. En déduire une base de C_{Δ} puis une base de C_B . Quelle est la dimension de C_B ?

I.B.3) Troisième exemple

On considère la matrice $G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$.

- Q 16. Donner le polynôme caractéristique de G, ses valeurs propres et ses sous-espaces propres.
- ${f Q}$ 17. G est-elle trigonalisable? Est-elle diagonalisable? Justifier les réponses.

On note q l'endomorphisme de \mathbb{R}^3 admettant G comme matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 .

- **Q 18.** Déterminer les vecteurs u et v de \mathbb{R}^3 vérifiant g(u) = -2u et g(v) = v et dont les premières composantes dans la base \mathcal{B} sont égales à 1.
- **Q 19.** Déterminer le vecteur w de première composante nulle dans la base \mathcal{B} vérifiant $(g-Id_{\mathbb{R}^3})(w)=v$.
- **Q 20.** Vérifier que $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 et donner une matrice P_3 inversible telle que $G = P_3 T P_3^{-1}$,

$$T = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Q 21. Montrer qu'une matrice M' de $\mathcal{M}_3(\mathbb{R})$ appartient à C_T si et seulement s'il existe quatre réels a, b, c et d tels que

$$M' = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & b \end{pmatrix}.$$

Q 22. En déduire une base de C_T , puis une base de C_G .

I.C - Commutant d'une matrice d'ordre n ayant n valeurs propres distinctes

On suppose dans cette sous-partie que n est un entier naturel supérieur ou égal à 2 et que A est une matrice réelle d'ordre n admettant n valeurs propres réelles deux à deux distinctes $\lambda_1, ..., \lambda_n$.

- I.C.1)
- **Q 23.** Justifier qu'il existe une matrice P_4 inversible telle que $A=P_4DP_4^{-1}$ où $D=\mathrm{diag}(\lambda_1,...,\lambda_n)$.
- **Q 24.** Démontrer que, pour tout polynôme Π de $\mathbb{R}[X]$,

$$\operatorname{diag} \bigl(\Pi(\lambda_1),...,\Pi(\lambda_n)\bigr) = \Pi\bigl(\operatorname{diag}(\lambda_1,...,\lambda_n)\bigr).$$

- **I.C.2)** On considère l'application $\Theta : \begin{bmatrix} \mathbb{R}_{n-1}[X] & \to & \mathbb{R}^n \\ \Pi & \mapsto & (\Pi(\lambda_1), ..., \Pi(\lambda_n)) \end{bmatrix}$
- **Q 25.** Montrer que Θ est linéaire et injective.
- **Q 26.** Démontrer que, pour tout n-uple $(\mu_1,...,\mu_n)$ de \mathbb{R}^n , il existe un unique polynôme $Q\in\mathbb{R}_{n-1}[X]$ tel que

$$\forall i \in [1, n], \qquad Q(\lambda_i) = \mu_i.$$

- **I.C.3)** Soit M' une matrice de $\mathcal{M}_n(\mathbb{R})$.
- **Q 27.** Pour tout $(i,j) \in [1,n]^2$, calculer $[M'D]_{i,j}$ et $[DM']_{i,j}$.
- **Q 28.** Démontrer que M' appartient à C_D si et seulement s'il existe des réels $\mu_1,...,\mu_n$ tels que

$$M' = \operatorname{diag}(\mu_1, ..., \mu_n).$$

Q 29. Déterminer une base de C_D , puis une base de C_A .

- ${\bf Q}$ 30. Comparer la dimension de C_A avec le résultat obtenu à la question 12.
- **I.C.4)** Soit M une matrice appartenant à C_A . On pose $M' = P_4^{-1}MP_4$.
- **Q 31.** Démontrer qu'il existe un polynôme $Q \in \mathbb{R}[X]$ tel que M' = Q(D).
- **Q 32.** Démontrer que pour tout entier naturel n, $(P_4DP_4^{-1})^n = P_4D^nP_4^{-1}$, puis que,

$$\forall \Pi \in \mathbb{R}[X], \qquad \Pi(P_4DP_4^{-1}) = P_4\,\Pi(D)P_4^{-1}.$$

 ${\bf Q}$ 33. En déduire que M=Q(A), puis comparer C_A à l'ensemble des polynômes matriciels en A.

I.D - Commutant d'une matrice diagonalisable ayant deux valeurs propres

On suppose dans cette sous-partie que $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice diagonalisable sur \mathbb{R} , ayant exactement deux valeurs propres λ_1 et λ_2 .

Pour tout $i \in \{1, 2\}$, on note $n_i = \dim(E_{\lambda_i}(A))$ où $E_{\lambda_i}(A)$ est le sous-espace propre de A associé à la valeur propre λ_i .

Soient

$$D = \left(\frac{\lambda_1 I_{n_1} \mid 0}{0 \mid \lambda_2 I_{n_2}}\right)$$

et P_5 une matrice inversible de $\mathcal{M}_n(\mathbb{R})$ telle que $A = P_5 D P_5^{-1}$.

Q 34. Montrer qu'une matrice M' de $\mathcal{M}_n(\mathbb{R})$ appartient à C_D si et seulement s'il existe deux matrices $M_1' \in \mathcal{M}_{n_1}(\mathbb{R})$ et $M_2' \in \mathcal{M}_{n_2}(\mathbb{R})$ telles que

$$M' = \left(\frac{M_1' \mid 0}{0 \mid M_2'}\right)$$

 ${f Q}$ 35. En déduire la dimension de C_A et comparer ce résultat avec celui trouvé à la question 15.

II Suites récurrentes linéaires d'ordre 3

On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles définies sur \mathbb{N} et F le sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ formé des suites $(u_n)_{n\in\mathbb{N}}$ qui vérifient

$$\forall n \in \mathbb{N}, \quad u_{n+3} = au_{n+2} + (a+3)u_{n+1} - 2(a+1)u_n$$

où a est un nombre réel. On admet que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

$II.A - \acute{E}tude du cas particulier a = 0$

On considère ici la suite $(u_n)_{n\in\mathbb{N}}$ définie par ses trois premiers termes u_0, u_1, u_2 et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 3u_{n+1} - 2u_n. \tag{II.1}$$

Pour tout entier naturel n, on pose $U_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$.

- **Q 36.** Donner l'expression de U_{n+1} en fonction de U_n et de la matrice G définie au I.B.3. En déduire l'expression de U_n en fonction de G et de U_0 .
- **Q 37.** Déterminer, pour tout entier naturel n, la matrice T^n où T est la matrice définie à la question 20.
- **Q 38.** En décomposant T^n en une somme de trois matrices bien choisies, montrer que $(u_n)_{n\in\mathbb{N}}$ est combinaison linéaire des suites $((-2)^n)_{n\in\mathbb{N}}$, $(n)_{n\in\mathbb{N}}$, $(1)_{n\in\mathbb{N}}$.

Q 39. Réciproquement, démontrer que toute combinaison linéaire des trois suites précédentes vérifie la récurrence (II.1).

II.B - Étude du cas général

On revient au cas général où a est un réel quelconque. On considère l'application

$$\varphi: \begin{vmatrix} F & \to & \mathbb{R}^3 \\ (u_n)_{n \in \mathbb{N}} & \mapsto & (u_0, u_1, u_2) \end{vmatrix}$$

Q 40. Démontrer que φ est un isomorphisme et donner la dimension de F.

 ${\bf Q}$ 42. Soit $x\in \mathbb{R}^*.$ Démontrer que la suite (u_n) définie par

$$\forall n \in \mathbb{N}, \quad u_n = x^n,$$

appartient à F si et seulement si

$$x^{3} - ax^{2} - (a+3)x + 2(a+1) = 0.$$
 (II.2)

L'équation (II.2) s'appelle équation caractéristique de la récurrence. On note $C(x)=x^3-ax^2-(a+3)x+2(a+1)$.

 ${f Q}$ 43. Démontrer que 1 est racine du polynôme C et et que toutes les racines de C sont réelles.

Q 44. On suppose $a \neq 0$ et $a \neq -3$. Montrer que C admet deux racines distinctes, autres que 1, notées r_1 et r_2 . Montrer que les suites $(1)_{n \in \mathbb{N}}$, $(r_1^n)_{n \in \mathbb{N}}$ et $(r_2^n)_{n \in \mathbb{N}}$ forment une base de l'espace vectoriel F.

Q 45. Montrer que, si a=-3, l'équation (II.2) admet une racine double et une racine simple, notées respectivement r_0 et r_1 . Donner les valeurs de r_0 et r_1 .

Q 46. Soit x un nombre réel non nul et $(v_n)_{n\in\mathbb{N}}$ la suite de terme général nx^n . Démontrer que, pour tout n de \mathbb{N} ,

$$v_{n+3} - av_{n+2} \ - (a+3)v_{n+1} + 2(a+1)v_n = x^n \big(nC(x) + xC'(x)\big)$$

où C' désigne la dérivée de C.

Q 47. En déduire, dans le cas où a=-3, que la suite $(nr_0^n)_{n\in\mathbb{N}}$ est élément de F. Déterminer une base de F.

Q 48. Déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant

$$u_0 = 1, \quad u_1 = 0, \quad u_2 = 1 \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+3} = -3u_{n+2} + 4u_n.$$

 \bullet \bullet FIN \bullet \bullet

