

Mathématiques 2

PC C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Dans tout ce sujet, I est un intervalle de \mathbb{R} d'intérieur non vide et w est une fonction continue et strictement positive de I dans \mathbb{R} ; on dit que w est un poids sur I.

Étant donnée une fonction continue $f:I\to\mathbb{R}$ telle que fw est intégrable sur I, on cherche à approcher l'intégrale $\int f(x)w(x)\,\mathrm{d}x$ par une expression de la forme

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j),$$

où $n \in \mathbb{N}, (\lambda_0,...,\lambda_n) \in \mathbb{R}^{n+1}$ et $x_0 < x_1 < \cdots < x_n$ sont n+1 points distincts dans I.

Une telle expression $I_n(f)$ est appelée formule de quadrature et on note

$$e(f) = \int\limits_I f(x) w(x) \, \mathrm{d}x - \sum_{j=0}^n \lambda_j f(x_j)$$

l'erreur de quadrature associée. On remarque que e est une forme linéaire sur l'espace vectoriel des fonctions f de I dans $\mathbb R$ telles que fw est intégrable sur I.

On rappelle qu'un polynôme est dit *unitaire* si son coefficient dominant est 1.

Étant donné un entier $m \in \mathbb{N}$, on note $\mathbb{R}_m[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à m. On dit qu'une formule de quadrature $I_n(f)$ est exacte $sur \mathbb{R}_m[X]$ si,

$$\forall P \in \mathbb{R}_m[X], \quad e(P) = 0,$$

ce qui signifie que, pour tout polynôme P de degré inférieur ou égal à m,

$$\int_I P(x)w(x) dx = \sum_{j=0}^n \lambda_j P(x_j).$$

Enfin, on appelle ordre d'une formule de quadrature $I_n(f)$ le plus grand entier $m \in \mathbb{N}$ pour lequel la formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$.

Les parties II et III s'appuient sur la partie I et sont indépendantes entre elles.

I Généralités sur les formules de quadrature

I.A - Exemples élémentaires

Dans cette sous-partie, on se place dans le cas I = [0,1] et $\forall x \in I$, w(x) = 1. On cherche donc à approcher $\int_{0}^{1} f(x) dx$ lorsque f est une fonction continue de [0,1] dans \mathbb{R} .

Q 1. Déterminer l'ordre de la formule de quadrature $I_0(f) = f(0)$ et représenter graphiquement l'erreur associée e(f).

Q 2. Faire de même avec la formule de quadrature $I_0(f) = f(1/2)$.

Q 3. Déterminer les coefficients λ_0 , λ_1 , λ_2 pour que la formule $I_2(f) = \lambda_0 f(0) + \lambda_1 f(1/2) + \lambda_2 f(1)$ soit exacte sur $\mathbb{R}_2[X]$. Cette formule de quadrature est-elle d'ordre 2 ?

I.B - Construction de formules d'ordre quelconque

On revient au cas général.

Soit $n \in \mathbb{N}$. On considère n+1 points distincts dans I, notés $x_0 < x_1 < \dots < x_n$, et une fonction continue f de I dans \mathbb{R} .

- $\mathbf{Q} \ \mathbf{4.} \qquad \text{Montrer que l'application linéaire } \varphi: \left| \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}^{n+1} \\ P & \mapsto & \left(P(x_0), P(x_1), ..., P(x_n) \right) \end{array} \right| \text{ est un isomorphisme.}$
- **Q 5.** Montrer que, pour tout $i \in [0, n]$, il existe un unique polynôme $L_i \in \mathbb{R}_n[X]$ tel que

$$\forall j \in \llbracket 0, n \rrbracket, \quad L_i(x_j) = \left\{ \begin{matrix} 0 & \text{si } j \neq i, \\ 1 & \text{si } j = i. \end{matrix} \right.$$

 $\mathbf{Q} \ \mathbf{6.} \qquad \text{Montrer que } (L_0,...,L_n) \text{ est une base de } \mathbb{R}_n[X].$

Cette base est appelée base de Lagrange associée aux points $(x_0, ..., x_n)$.

Q 7. On suppose que, pour tout $k \in \mathbb{N}$, $x \mapsto x^k w(x)$ est intégrable sur I. Montrer que la formule de quadrature $I_n(f) = \sum_{i=0}^n \lambda_j f(x_j)$ est exacte sur $\mathbb{R}_n[X]$ si, et seulement si,

$$\forall j \in [\![0,n]\!], \quad \lambda_j = \int\limits_I L_j(x) w(x) \,\mathrm{d} x.$$

Q 8. On se place dans le cas I = [0,1] et $\forall x \in I$, w(x) = 1. Déterminer la base de Lagrange associée aux points (0,1/2,1) et retrouver ainsi les coefficients de la formule de quadrature $I_2(f)$ de la question 3.

I.C - Noyau de Peano et évaluation de l'erreur

Dans cette sous-partie, on suppose que l'intervalle I est un segment : I = [a, b], avec a < b. Pour tout entier naturel m, on considère la fonction $\varphi_m : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,t) \in \mathbb{R}^2, \qquad \varphi_m(x,t) = \begin{cases} (x-t)^m & \text{si } x \geqslant t, \\ 0 & \text{si } x < t. \end{cases}$$

On observe que φ_m est continue si $m\geqslant 1$ et discontinue si m=0.

On considère une formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$.

On note $m \in \mathbb{N}$ l'ordre de cette formule et on cherche à évaluer l'erreur associée :

$$e(f) = \int\limits_a^b f(x) w(x) \, \mathrm{d}x - \sum\limits_{j=0}^n \lambda_j f(x_j).$$

On suppose que f est de classe \mathcal{C}^{m+1} sur I.

 ${f Q}$ 9. À l'aide de la formule de Taylor avec reste intégral, montrer que $e(f)=e(R_m)$, où R_m est définie par

$$\forall x \in [a,b], \quad R_m(x) = \frac{1}{m!} \int\limits_a^b \varphi_m(x,t) f^{(m+1)}(t) \, \mathrm{d}t.$$

Q 10. En déduire que, si $m \ge 1$,

M037/2021-03-15 14:28:25

$$e(f) = \frac{1}{m!} \int_{a}^{b} K_m(t) f^{(m+1)}(t) dt,$$

où la fonction $K_m:[a,b]\to\mathbb{R}$ est définie par

$$\forall t \in [a,b], \qquad K_m(t) = e\big(x \mapsto \varphi_m(x,t)\big) = \int\limits_a^b \varphi_m(x,t) w(x) \, \mathrm{d}x - \sum\limits_{j=0}^n \lambda_j \varphi_m(x_j,t).$$

On pourra utiliser le résultat admis suivant : pour toute fonction continue $g:[a,b]^2\to\mathbb{R}$, on a

$$\int_{a}^{b} \left(\int_{a}^{b} g(x,t) dt \right) dx = \int_{a}^{b} \left(\int_{a}^{b} g(x,t) dx \right) dt.$$

La fonction K_m est appelée noyau de Peano associé à la formule de quadrature. On admet que cette expression de e(f) reste valable pour m=0.

I.D - Exemple: méthode des trapèzes

Dans cette sous-partie, on suppose que I est un segment et $\forall x \in I, w(x) = 1$.

On se place d'abord dans le cas I = [0,1] et on considère la formule de quadrature

$$I_1(g) = \frac{g(0) + g(1)}{2},$$

qui est d'ordre m = 1 (on ne demande pas de le montrer).

Q 11. Calculer le noyau de Peano associé $t \mapsto K_1(t)$ et montrer que, pour toute fonction g de classe \mathcal{C}^2 de [0,1] dans \mathbb{R} , on a la majoration suivante de l'erreur de quadrature associée :

$$|e(g)| \leqslant \frac{1}{12} \sup_{x \in [0,1]} \lvert g''(x) \rvert.$$

On se place maintenant dans le cas d'un segment quelconque I = [a, b] (avec a < b), qu'on subdivise en n + 1 points $a_0, ..., a_n$ équidistants :

$$\forall i \in [\![0,n]\!], \qquad a_i = a + ih,$$

où $h = \frac{b-a}{n}$ est le pas de la subdivision.

On considère alors la formule de quadrature

$$T_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_i) + f(a_{i+1})}{2},$$

appelée méthode des trapèzes. L'erreur de quadrature associée est notée :

$$e_n(f) = \int\limits_a^b f(x) \,\mathrm{d}x - T_n(f).$$

Q 12. Représenter graphiquement $T_n(f)$.

Q 13. On suppose que f est une fonction de classe \mathcal{C}^2 de [a,b] dans \mathbb{R} . Montrer que

$$e_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} e(g_i),$$

où e est l'erreur associée à la formule de quadrature I_1 étudiée à la question 11 et les $g_i:[0,1]\to\mathbb{R}$ sont des fonctions à préciser.

Q 14. En déduire la majoration d'erreur

$$|e_n(f)| \leqslant \frac{(b-a)^3}{12n^2} \sup_{x \in [a,b]} |f''(x)|.$$

II Polynômes orthogonaux et applications

Dans la suite, on note E l'ensemble des fonctions f continues de I dans \mathbb{R} telles que f^2w est intégrable sur I.

II.A - Étude d'un produit scalaire

Q 15. Montrer que, pour toutes fonctions f et g de E, le produit fg w est intégrable sur I. On pourra utiliser l'inégalité $\forall (a,b) \in \mathbb{R}^2$, $|ab| \leq \frac{1}{2}(a^2 + b^2)$, après l'avoir justifiée.

Q 16. Montrer que E est un \mathbb{R} -espace vectoriel.

Pour toutes fonctions f et g de E, on pose

$$\langle f, g \rangle = \int_I f(x)g(x)w(x) dx.$$

Q 17. Montrer qu'on définit ainsi un produit scalaire sur E.

Dans la suite, on munit E de ce produit scalaire et on note $\|\cdot\|$ la norme associée.

II.B - Polynômes orthogonaux associés à un poids

On suppose que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I. Cela entraine par linéarité de l'intégrale que E contient toutes les fonctions polynomiales.

On admet qu'il existe une unique suite de polynômes $(p_n)_{n\in\mathbb{N}}$ telle que

- (a) pour tout $n \in \mathbb{N}$, p_n est unitaire,
- (b) pour tout $n \in \mathbb{N}$, $\deg(p_n) = n$,
- (c) la famille $(p_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle \cdot, \cdot \rangle$, autrement dit $\langle p_i, p_j \rangle = 0$, pour $i \neq i \in \mathbb{N}$.

On dit que les (p_n) sont les polynômes orthogonaux associés au poids w.

On s'intéresse aux racines des polynômes p_n .

On rappelle que \mathring{I} désigne l'intérieur de I, c'est-à-dire l'intervalle I privé de ses éventuelles extrémités.

On a donc $\mathring{I} = [a, b[$, où $a = \inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = \sup(I) \in \mathbb{R} \cup \{+\infty\}$.

Soit $n \in \mathbb{N}^*$. On note $x_1,...,x_k$ les racines distinctes de p_n qui sont dans \mathring{I} et $m_1,...,m_k$ leurs multiplicités respectives. On considère le polynôme

$$q(X) = \prod_{i=1}^k (X - x_i)^{\varepsilon_i}, \quad \text{avec } \varepsilon_i = \begin{cases} 1 & \text{si } m_i \text{ est impair,} \\ 0 & \text{si } m_i \text{ est pair.} \end{cases}$$

Q 18. En étudiant $\langle p_n,q\rangle$, montrer que p_n possède n racines distinctes dans \mathring{I} .

II.C - Applications: méthodes de quadrature de Gauss

Considérons une formule de quadrature

$$I_n(f) = \sum_{i=0}^n \lambda_j f(x_j),$$

où $n \in \mathbb{N}, \, \lambda_0, ..., \lambda_n \in \mathbb{R}$ et $x_0 < x_1 < \cdots < x_n$ sont n+1 points distincts dans I.

On suppose que les coefficients $(\lambda_j)_{0 \le j \le n}$ sont choisis comme à la question 7 :

$$\forall j \in [\![0,n]\!], \quad \lambda_j = \int\limits_{\mathbb{T}} L_j(x) w(x) \,\mathrm{d} x,$$

où $(L_0,...,L_n)$ est la base de Lagrange associée aux points $(x_0,...,x_n)$ (définie dans la partie I).

Ainsi, la formule $I_n(f)$ est d'ordre $m \ge n$. Nous allons montrer que dans ces conditions, il existe un seul choix des points $(x_i)_{0 \le i \le n}$ qui permet d'obtenir l'ordre m le plus élevé possible.

Q 19. En raisonnant avec le polynôme
$$\prod_{i=0}^{n} (X - x_i)$$
, montrer que $m \leq 2n + 1$.

Q 20. Montrer que m = 2n + 1 si et seulement si les x_i sont les racines de p_{n+1} .

II.D - Exemple 1

On se place ici dans le cas où I = [-1, 1] et w(x) = 1.

On est donc bien dans les conditions d'application des résultats précédemment obtenus.

Q 21. Déterminer les quatre premiers polynômes orthogonaux (p_0, p_1, p_2, p_3) associés au poids w.

Q 22. En déduire explicitement une formule de quadrature d'ordre 5 (on déterminera les points x_j et les coefficients λ_i).

II.E - Exemple 2

Dans cette sous-partie, I =]-1, 1[et $w(x) = \frac{1}{\sqrt{1-x^2}}$.

Q 23. Montrer que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I.

Cela entraine que E contient toutes les fonctions polynomiales.

Dans la suite, on considère, pour tout entier $n \in \mathbb{N}$, la fonction $Q_n : \begin{bmatrix} [-1,1] & \to & \mathbb{R} \\ x & \mapsto & \cos(n\arccos(x)) \end{bmatrix}$.

Q 24. Calculer Q_0, Q_1 et pour tout $n \in \mathbb{N}$, exprimer simplement Q_{n+2} en fonction de Q_{n+1} et Q_n

Q 25. En déduire que, pour tout $n \in \mathbb{N}$, Q_n est polynomiale et déterminer son degré et son coefficient dominant

Dans la suite, on notera également Q_n le polynôme de $\mathbb{R}[X]$ qui coïncide avec $x\mapsto Q_n(x)$ sur [-1,1].

 ${\bf Q}$ 26. On note $(p_n)_{n\in\mathbb{N}}$ la suite de polynômes orthogonaux associés au poids w. Montrer que

$$\left\{ \begin{aligned} p_0 &= Q_0, \\ \forall n \in \mathbb{N}^*, \quad p_n &= \frac{1}{2^{n-1}}Q_n. \end{aligned} \right.$$

Q 27. Pour $n \in \mathbb{N}$, déterminer explicitement les points $(x_j)_{0 \leqslant j \leqslant n}$ de I telle que la formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$ soit d'ordre maximal.

III Accélération de la méthode des trapèzes

On dit qu'une fonction S définie sur une partie de $\mathbb C$ est développable en série entière au voisinage de 0 s'il existe un disque ouvert D non vide de centre 0 et une suite complexe $(\alpha_n)_{n\in\mathbb N}$ telle que $\forall z\in D,\, S(z)=\sum_{n=0}^{+\infty}\alpha_nz^n.$

III.A – Nombres b_m et polynômes B_m

On considère une série entière $\sum_{n\geqslant 0} \alpha_n z^n$, de rayon de convergence $R\neq 0$ et avec $\alpha_0=1$. On note S la somme de cette série entière sur son disque de convergence : pour tout $z\in\mathbb{C}$ vérifiant |z|< R, on a

$$S(z) = \sum_{n=0}^{+\infty} \alpha_n z^n.$$

Q 28. Montrer qu'il existe un réel q > 0 tel que $\forall n \in \mathbb{N}, |\alpha_n| \leq q^n$.

Q 29. On suppose que $\frac{1}{S}$ est développable en série entière au voisinage de 0 et on note $\sum_{n\geqslant 0}\beta_nz^n$ son développement. Calculer β_0 et, pour tout $n\in\mathbb{N}^*$, exprimer β_n en fonction de $\alpha_1,...,\alpha_n,\beta_1,...,\beta_{n-1}$. En déduire que

$$\forall n \in \mathbb{N}, \quad |\beta_n| \leqslant (2q)^n.$$

Q 30. Montrer que $\frac{1}{S}$ est développable en série entière au voisinage de 0.

Q 31. En utilisant ce qui précède, montrer qu'il existe une unique suite complexe $(b_n)_{n\in\mathbb{N}}$ et un réel r>0 tels que, pour tout $z\in\mathbb{C}$,

$$0 < |z| < r \Rightarrow \frac{z}{e^z - 1} = \sum_{n=0}^{+\infty} \frac{b_n}{n!} z^n.$$

Q 32. En effectuant un produit de Cauchy, montrer que $b_0 = 1$ et, pour tout entier $n \ge 2$,

$$\sum_{p=0}^{n-1} \binom{n}{p} b_p = 0.$$

 ${\bf Q}$ 33. En déduire la valeur de $b_1,\,b_2,\,b_3$ et $b_4.$

 ${f Q}$ 34. En utilisant un argument de parité, montrer que $b_{2p+1}=0$ pour tout entier $p\geqslant 1$. Dans la suite du problème, on considère les polynômes B_m définis par

$$\forall m \in \mathbb{N}, \quad B_m(x) = \sum_{k=0}^m \binom{m}{k} b_k x^{m-k}.$$

On remarque que chaque polynôme B_m est unitaire de degré m et que, pour tout $m \in \mathbb{N},$ $B_m(0) = b_m$.

Q 35. Déterminer B_0 , B_1 , B_2 et B_3 .

Q 36. Montrer que, pour tout entier $m \ge 2$, $B_m(1) = b_m$, puis que, pour tout entier $m \ge 1$, $B'_m = mB_{m-1}$.

III.B - Développement asymptotique de l'erreur dans la méthode des trapèzes

Dans cette sous-partie, on utilise les nombres b_m et les polynômes B_m définis dans la sous-partie III. A pour établir un développement asymptotique à tout ordre de l'erreur de quadrature associée à la méthode des trapèzes (déjà étudiée dans la partie I), pour une fonction suffisamment régulière.

Pour tout réel x, on note |x| sa partie entière.

On fixe un entier $n \in \mathbb{N}^*$ et on considère une fonction $g:[0,n] \to \mathbb{R}$ de classe \mathcal{C}^{∞} .

Q 37. Montrer que

$$\int_{0}^{n} g(x) dx = \sum_{k=0}^{n-1} \frac{g(k) + g(k+1)}{2} - \int_{0}^{n} B_{1}(x - \lfloor x \rfloor) g'(x) dx.$$

Q 38. En déduire que pour tout entier $m \ge 2$,

$$\int\limits_0^n g(x)\,\mathrm{d}x = \sum_{k=0}^{n-1} \frac{g(k) + g(k+1)}{2} + \sum_{p=2}^m \frac{(-1)^{p-1}b_p}{p!} \left(g^{(p-1)}(n) - g^{(p-1)}(0)\right) + \frac{(-1)^m}{m!} \int\limits_0^n B_m(x - \lfloor x \rfloor) g^{(m)}(x)\,\mathrm{d}x.$$

On considère maintenant une fonction $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^{∞} et la formule de quadrature déjà étudiée à la partie I :

$$T_n(f) = h \sum_{i=0}^{n-1} \frac{f(a_i) + f(a_{i+1})}{2},$$

(méthode des trapèzes), où $h=\frac{b-a}{n}$ et $\forall i\in [\![0,n-1]\!],\, a_i=a+ih.$

Q 39. Montrer que, pour tout entier $m \ge 1$,

$$\int_{a}^{b} f(x) \, \mathrm{d}x = T_{n}(f) - \sum_{p=1}^{m} \frac{\gamma_{2p}}{n^{2p}} + \rho_{2m}(n),$$

où les coefficients γ_{2p} sont donnés par

$$\gamma_{2p} = \frac{(b-a)^{2p}b_{2p}}{(2p)!} \big(f^{(2p-1)}(b) - f^{(2p-1)}(a)\big)$$

et $\rho_{2m}(n)$ est un reste intégral vérifiant la majoration

$$|\rho_{2m}(n)| \leqslant \frac{C_{2m}}{n^{2m}}$$

où C_{2m} est une constante à préciser ne dépendant que de m, a et b.

On a donc établi, pour tout entier $m \ge 1$, le développement asymptotique

$$T_n(f) = \int_a^b f(x) \, \mathrm{d}x + \frac{\gamma_2}{n^2} + \frac{\gamma_4}{n^4} + \dots + \frac{\gamma_{2m}}{n^{2m}} + O_{n \to +\infty} \left(\frac{1}{n^{2(m+1)}} \right),$$

où les coefficients γ_{2p} sont indépendants de n.

• • • FIN • • •

