

Mathématiques 1

PC C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Ce sujet est divisé en trois parties.

- Dans la première partie, on étudie une marche aléatoire sur ℤ qui modélise la trajectoire d'une particule. On s'intéresse en particulier au temps nécessaire pour que la particule revienne pour la première fois à son point de départ, si cela arrive. Pour cela, on introduit une suite de nombres appelés nombres de Catalan et on étudie leurs propriétés.
- Dans la deuxième partie, entièrement indépendante de la première, on s'intéresse au calcul d'un déterminant à l'aide d'une suite de polynômes orthogonaux.
- Dans la troisième partie enfin, on utilise les résultats des deux premières parties pour calculer deux déterminants associés aux nombres de Catalan.

I Étude d'une marche aléatoire sur Z

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires définies sur Ω et à valeurs dans $\{-1, 1\}$, mutuellement indépendantes, et telles que, pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(X_n=1)=p\quad\text{et}\quad \mathbb{P}(X_n=-1)=1-p,\quad \text{où }p\in]0,1[.$$

On pose
$$S_0=0$$
 et, pour tout $n\in\mathbb{N}^*,$ $S_n=\sum_{k=1}^n X_k.$

La suite $(S_n)_{n\in\mathbb{N}}$ modélise la trajectoire aléatoire dans \mathbb{Z} d'une particule située en $S_0=0$ à l'instant initial n=0, et faisant à chaque instant $n\in\mathbb{N}$ un saut de +1 avec une probabilité p et de -1 avec une probabilité 1-p, les sauts étant indépendants et p appartenant à]0,1[.

Pour $\omega \in \Omega$, on représente la trajectoire de la particule par la ligne brisée joignant les points de coordonnées $(n, S_n(\omega))_{n \in \mathbb{N}}$.

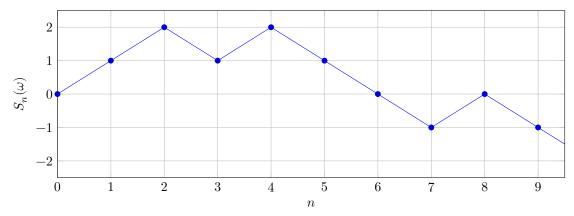


Figure 1 Exemple de trajectoire possible

I.A – Espérance et variance de S_n

Dans cette sous-partie, n désigne un entier naturel non nul.

Soit Y_n la variable aléatoire sur Ω égale au nombre de valeurs de $k \in [1, n]$ telles que $X_k = 1$.

Q 1. Quelle est la loi de Y_n ? En déduire l'espérance et la variance de Y_n .

Q 2. Quelle relation a-t-on entre S_n et Y_n ? En déduire l'espérance et la variance de S_n . Justifier que S_n et n ont même parité.

I.B - Chemins de Dyck et loi du premier retour à l'origine

Pour $m \in \mathbb{N}^*$, on appelle chemin de longueur m tout m-uplet $\gamma = (\gamma_1, ..., \gamma_m)$ tel que $\forall i \in [1, m], \gamma_i \in \{-1, 1\}$.

On pose alors $s_{\gamma}(0) = 0$ et, pour tout $k \in [1, m]$, $s_{\gamma}(k) = \sum_{i=1}^{k} \gamma_{i}$.

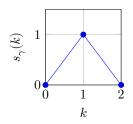
On représente le chemin γ par la ligne brisée joignant la suite des points de coordonnées $(k, s_{\gamma}(k)), k \in [0, m]$.

Pour $n \in \mathbb{N}^*$:

- on appelle chemin de Dyck de longueur 2n tout chemin $\gamma=(\gamma_1,...,\gamma_{2n})$ de longueur 2n tel que $s_\gamma(2n)=0$ et $\forall k\in [\![0,2n]\!],\ s_\gamma(k)\geqslant 0$;
- on note C_n le nombre de chemins de Dyck de longueur 2n.

On convient de plus que $C_0 = 1$.

La suite $(C_n)_{n\in\mathbb{N}}$ est appelée suite des nombres de Catalan. On constate que $C_1=1$ et $C_2=2$.



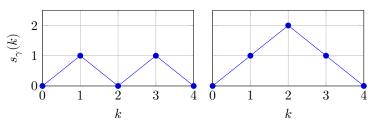


Figure 2 Représentation des chemins de Dyck de longueurs 2 et 4

- Q 3. Donner sans démonstration la valeur de C_3 et représenter tous les chemins de Dyck de longueur 6. Soit $n \in \mathbb{N}$ et $\gamma = (\gamma_1,...,\gamma_{2n+2})$ un chemin de Dyck de longueur 2n+2. Soit $r = \max\{i \in [\![0,n]\!] \mid s_\gamma(2i) = 0\}$. On suppose 0 < r < n et on considère les chemins $\alpha = (\gamma_1,...,\gamma_{2r})$ et $\beta = (\gamma_{2r+2},...,\gamma_{2n+1})$.
- **Q 4.** Justifier à l'aide d'une figure que $\gamma_{2r+1}=1,\,\gamma_{2n+2}=-1$ et que α et β sont des chemins de Dyck. Soit $m\in\mathbb{N}^*$ et soit $\gamma=(\gamma_1,...,\gamma_m)$ un chemin de longueur m.

Pour $t\in\mathbb{N},$ on note $A_{t,\gamma}$ l'événement : « pour tout $k\in[\![1,m]\!],\,X_{t+k}=\gamma_k$ » ; en d'autres termes,

$$A_{t,\gamma} = \bigcap_{k=1}^{m} (X_{t+k} = \gamma_k).$$

Q 5. Soit $n \in \mathbb{N}^*$ et soit $\gamma = (\gamma_1, ..., \gamma_{2n})$ un chemin de Dyck de longueur 2n. Pour $t \in \mathbb{N}$, exprimer $\mathbb{P}(A_{t,\gamma})$ en fonction de n et p.

Soit T la variable aléatoire, définie sur Ω et à valeurs dans \mathbb{N} , égale au premier instant où la particule revient à l'origine, si cet instant existe, et égale à 0 si la particule ne revient jamais à l'origine :

$$\forall \omega \in \Omega, \quad T(\omega) = \begin{cases} 0 & \text{si } \forall k \in \mathbb{N}^*, S_k(\omega) \neq 0 \\ \min\left\{k \in \mathbb{N}^* \mid S_k(\omega) = 0\right\} & \text{sinon} \end{cases}$$

- **Q 6.** Montrer que T prend des valeurs paires et que, pour tout $n \in \mathbb{N}$, $\mathbb{P}(T = 2n + 2) = 2C_n p^{n+1}(1-p)^{n+1}$.
- I.B.1) Série génératrice des nombres de Catalan
- **Q 7.** En utilisant la question 4, montrer

$$\forall n \in \mathbb{N}, \quad C_{n+1} = \sum_{r=0}^{n} C_r C_{n-r}.$$

- **Q 8.** À l'aide de la variable aléatoire T, montrer que la série $\sum_{n\geq 0} \frac{C_n}{4^n}$ converge.
- **Q 9.** En déduire que la série entière $\sum_{n\geqslant 0}C_nt^n$ converge normalement sur l'intervalle $I=[-\frac{1}{4},\frac{1}{4}].$

On pose alors, pour tout $t \in I$,

$$f(t) = \sum_{n=0}^{+\infty} C_n t^n \quad \text{et} \quad g(t) = 2t f(t).$$

On rappelle que la série génératrice de T, donnée par $G_T(t) = \sum_{n=0}^{\infty} \mathbb{P}(T=n)t^n$, est définie si $t \in [-1,1]$.

- ${\bf Q}$ 10. À l'aide des questions précédentes, exprimer G_T à l'aide de g et de $\mathbb{P}(T=0).$
- **Q 11.** En déduire que si $p \neq \frac{1}{2}$, alors T admet une espérance.
- **Q 12.** Montrer que $\forall t \in I$, $g(t)^2 = 2g(t) 4t$.
- **Q 13.** En déduire qu'il existe une fonction $\varepsilon: I \to \{-1, 1\}$ telle que

$$\forall t \in I, \quad g(t) = 1 + \varepsilon(t)\sqrt{1 - 4t}.$$

Q 14. Montrer que ε est continue sur $I \setminus \{\frac{1}{4}\}$. En déduire

$$\forall t \in I, \quad g(t) = 1 - \sqrt{1 - 4t}.$$

- **Q 15.** En déduire que $\mathbb{P}(T \neq 0) = 1 \sqrt{1 4p(1 p)}$. Interpréter ce résultat lorsque $p = \frac{1}{2}$.
- **Q 16.** Montrer que si $p = \frac{1}{2}$, alors T n'admet pas d'espérance.
- I.C Expression des nombres de Catalan et équivalent
- **Q 17.** Justifier l'existence d'une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que

$$\forall x \in]-1,1[, \quad \sqrt{1+x} = 1 + \sum_{n=0}^{+\infty} a_n x^{n+1},$$

et, pour tout $n\in\mathbb{N},$ exprimer a_n à l'aide d'un coefficient binomial.

- $\mathbf{Q} \ \mathbf{18.} \quad \text{ En déduire } \forall n \in \mathbb{N}, \, C_n = \frac{1}{n+1} \binom{2n}{n}.$
- **Q 19.** Rappeler l'équivalent de Stirling. En déduire un équivalent de C_n lorsque n tend vers $+\infty$.
- Q 20. À partir de la question précédente, retrouver le résultat des questions 11 et 16.

II Calcul d'un déterminant à l'aide d'un système orthogonal

Dans cette partie, on suppose que l'espace vectoriel $\mathbb{R}[X]$ est muni d'un produit scalaire $(\cdot|\cdot)$ et on note $\|\cdot\|$ la norme associée.

Pour tout $n\in\mathbb{N},$ on note G_n la matrice carrée de taille n+1 suivante :

$$G_n = \left((X^{i-1} \big| X^{j-1}) \right)_{1 \leqslant i,j \leqslant n+1} = \begin{pmatrix} (1|1) & (1|X) & \cdots & (1|X^n) \\ (X|1) & (X|X) & \cdots & (X|X^n) \\ \vdots & \vdots & & \vdots \\ (X^n|1) & (X^n|X) & \cdots & (X^n|X^n) \end{pmatrix}$$

On cherche à obtenir une expression du déterminant de G_n à l'aide d'une suite de polynômes orthogonaux.

II.A - Définition et propriétés d'un système orthogonal

Dans $\mathbb{R}[X]$ muni du produit scalaire $(\cdot|\cdot)$, on appelle système orthogonal toute suite de polynômes $(P_n)_{n\in\mathbb{N}}$ vérifiant les propriétés suivantes :

- $--(P_n)_{n\in\mathbb{N}} \text{ est une famille orthogonale, c'est-à-dire}: \forall (i,j)\in\mathbb{N}^2,\, i\neq j \Rightarrow \left(P_i\big|P_j\right)=0\;;$
- pour tout $n \in \mathbb{N}$, P_n est unitaire et de degré n.

Dans toute la partie II, on considère un système orthogonal $(V_n)_{n\in\mathbb{N}}$.

- **Q 21.** Montrer que, pour tout $n \in \mathbb{N}$, la famille $(V_0, V_1, ..., V_n)$ est une base orthogonale de l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré inférieur ou égal à n.
- **Q 22.** Soit $n \in \mathbb{N}$ et $P \in \mathbb{R}[X]$ tels que deg P < n. Montrer que $(V_n|P) = 0$.
- **Q 23.** Soit $(W_n)_{n\in\mathbb{N}}$ un autre système orthogonal. Montrer que $\forall n\in\mathbb{N},\,W_n=V_n.$

II.B – Expression de $\det G_n$ à l'aide de la suite $(V_n)_{n\in\mathbb{N}}$

Soit $n \in \mathbb{N}$ et soit G_n' la matrice carrée de taille n+1 suivante :

$$G_n' = \left((V_{i-1}|V_{j-1}) \right)_{1 \leqslant i,j \leqslant n+1} = \begin{pmatrix} (V_0|V_0) & (V_0|V_1) & \cdots & (V_0|V_n) \\ (V_1|V_0) & (V_1|V_1) & \cdots & (V_1|V_n) \\ \vdots & \vdots & & \vdots \\ (V_n|V_0) & (V_n|V_1) & \cdots & (V_n|V_n) \end{pmatrix}$$

On note $Q_n = (q_{i,j})_{1 \leq i,j \leq n+1}$ la matrice de la famille $(V_0,V_1,...,V_n)$ dans la base $(1,X,...,X^n)$ de $\mathbb{R}_n[X]$.

- **Q 24.** Montrer que Q_n est triangulaire supérieure et que det $Q_n = 1$.
- **Q 25.** Montrer que $Q_n^{\top}G_nQ_n=G_n'$, où Q_n^{\top} est la transposée de la matrice Q_n .
- **Q 26.** En déduire que det $G_n = \prod_{i=0}^n ||V_i||^2$.

III Déterminant de Hankel des nombres de Catalan

Dans cette partie, on introduit un produit scalaire particulier sur $\mathbb{R}[X]$ et une suite de polynômes. On vérifie qu'il s'agit d'un système orthogonal pour ce produit scalaire, ce qui permettra d'appliquer les résultats de la partie précédente.

III.A - Produit scalaire

Q 27. Soit $P \in \mathbb{R}[X]$ et $Q \in \mathbb{R}[X]$. Montrer que la fonction $x \mapsto P(4x)Q(4x)\frac{\sqrt{1-x}}{\sqrt{x}}$ est intégrable sur]0,1]. Dans toute la partie III, on pose

$$\forall (P,Q) \in \mathbb{R}[X] \times \mathbb{R}[X], \quad (P|Q) = \frac{2}{\pi} \int^1 P(4x) Q(4x) \frac{\sqrt{1-x}}{\sqrt{x}} \, \mathrm{d}x.$$

Q 28. Montrer que $(\cdot|\cdot)$ est un produit scalaire sur $\mathbb{R}[X]$.

III.B - Système orthogonal

Soit $(U_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par $U_0=1,\,U_1=X-1$ et $\forall n\in\mathbb{N},\,U_{n+2}=(X-2)U_{n+1}-U_n.$

Q 29. Pour tout $n \in \mathbb{N}$, montrer que U_n est unitaire de degré n, et déterminer la valeur de $U_n(0)$.

Q 30. Soit $\theta \in \mathbb{R}$. Montrer que $\forall n \in \mathbb{N}$, $U_n(4\cos^2\theta)\sin\theta = \sin((2n+1)\theta)$.

Q 31. Soit
$$(m,n) \in \mathbb{N}^2$$
. Calculer $\int_{0}^{\pi/2} \sin((2m+1)\theta)\sin((2n+1)\theta) d\theta$.

Q 32. En déduire que $(U_n)_{n\in\mathbb{N}}$ est un système orthogonal et que, pour tout $n\in\mathbb{N}, \|U_n\|=1$. Pour calculer la valeur de $(U_m|U_n)$, on pourra effectuer le changement de variable $x=\cos^2\theta$.

III.C - Application

Pour tout $n \in \mathbb{N}$, on pose $\mu_n = (X^n|1)$.

Q 33. À l'aide d'une intégration par parties, montrer

$$\forall n \in \mathbb{N}^*, \quad 4\mu_{n-1} - \mu_n = \frac{2 \times 4^n}{\pi} \int\limits_0^1 x^{n-3/2} (1-x)^{3/2} \, \mathrm{d}x = \frac{3}{2n-1} \mu_n.$$

Q 34. En déduire $\forall n \in \mathbb{N}, \, \mu_n = C_n$.

Q 35. Soit $n \in \mathbb{N}$. Déduire des parties précédentes la valeur du déterminant

$$H_n = \det(C_{i+j-2})_{1\leqslant i,j\leqslant n+1} = \begin{vmatrix} C_0 & C_1 & C_2 & \cdots & C_{n-1} & C_n \\ C_1 & \ddots & & \ddots & \ddots & C_{n+1} \\ C_2 & & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ C_{n-1} & \ddots & \ddots & & \ddots & C_{2n-2} \\ C_n & C_{n+1} & \cdots & C_{2n-2} & C_{2n-1} & C_{2n} \end{vmatrix}$$

III.D - Un autre déterminant de Hankel

Dans cette sous-partie, on pose, pour tout $n \in \mathbb{N}$,

$$D_n(X) = \begin{vmatrix} C_0 & C_1 & C_2 & \cdots & C_{n-1} & C_n \\ C_1 & \ddots & & \ddots & \ddots & C_{n+1} \\ C_2 & & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & C_{2n-2} \\ C_{n-1} & C_n & C_{n+1} & \cdots & C_{2n-2} & C_{2n-1} \\ 1 & X & \cdots & X^{n-2} & X^{n-1} & X^n \end{vmatrix} \text{ et } H'_n = \begin{vmatrix} C_1 & C_2 & C_3 & \cdots & C_{n-1} & C_n \\ C_2 & \ddots & & \ddots & \ddots & \ddots & C_{n+1} \\ C_3 & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & C_{2n-3} \\ C_{n-1} & \ddots & \ddots & \ddots & \ddots & \ddots & C_{2n-2} \\ C_n & C_{n+1} & \cdots & C_{2n-3} & C_{2n-2} & C_{2n-1} \end{vmatrix}$$

Q 36. Soit $(n,k) \in \mathbb{N}^2$ tel que k < n. Montrer $(D_n | X^k) = 0$.

 $\mathbf{Q} \ \mathbf{37.} \quad \text{ En déduire que } \forall n \in \mathbb{N}, \, D_n = U_n, \, \text{puis déterminer, pour tout } n \in \mathbb{N}^*, \, \text{la valeur du déterminant } H_n'.$

