

Mathématiques 1

PSI

2020

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Objectif

L'objectif de ce sujet est l'étude de la gestion des erreurs dans un processus industriel.

On considère un processus industriel automatisé au cours duquel une tâche répétitive est effectuée à chaque instant $n \in \mathbb{N}^*$. On note X_n la variable aléatoire égale au nombre d'erreurs susceptibles de se produire à l'instant n. On admet que le système parvient à corriger ces erreurs et à maintenir son fonctionnement si le nombre total d'erreurs enregistrées jusqu'à l'instant n, noté $S_n = \sum_{k=1}^n X_k$, reste inférieur à une quantité de la

forme amn, où a>1 est une constante fixée et m est le nombre moyen d'erreurs enregistrées à chaque instant. On est donc amené à estimer une probabilité de la forme $P(S_n>nam)$, dans le but de montrer qu'elle tend vers 0 très rapidement lorsque n tend vers l'infini.

Dans la première partie, on étudie le cas particulier où les variables aléatoires X_n sont mutuellement indépendantes et de même loi de Poisson de paramètre 1/2. Dans la deuxième partie, on démontre partiellement le théorème de Perron-Frobenius, qui permet, dans la troisième partie, d'étudier le cas où les variables aléatoires X_n forment une chaîne de Markov, c'est-à-dire où le nombre d'erreurs enregistrées à l'instant n+1 dépend uniquement de celui enregistré à l'instant n.

I Cas de la loi de Poisson

Dans cette partie, on étudie le modèle élémentaire où la suite $(X_n)_{n\in\mathbb{N}^*}$ du nombre d'erreurs aux instants successifs est une suite de variables aléatoires identiquement distribuées, mutuellement indépendantes, et suivant une loi de Poisson de paramètre 1/2.

L'objectif de cette partie est de donner un équivalent de $P(S_n > n)$ lorsque n tend vers $+\infty$, afin de s'assurer que celle-ci converge vers 0 avec une vitesse de convergence exponentielle.

Pour tout $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n X_k$ et G_{X_n} la fonction génératrice de X_n .

- I.A Soit n un entier naturel supérieur ou égal à 1.
- **Q 1.** Montrer que S_n et X_{n+1} sont indépendantes.
- **Q 2.** Expliciter le calcul de la fonction génératrice G_{X_1} de la variable aléatoire X_1 .
- **Q 3.** Justifier que $\forall t \in \mathbb{R}$, $G_{S_n}(t) = (G_{X_1}(t))^n$.
- ${f Q}$ 4. Montrer que la variable aléatoire S_n suit une loi de Poisson dont on précisera le paramètre.
- I.B -
- **Q 5.** Vérifier que, pour tout $n \in \mathbb{N}^*$,

$$n! \left(\frac{2}{n}\right)^n P(S_n > n) = \mathrm{e}^{-n/2} \sum_{k=1}^\infty \frac{n! \, n^k}{(n+k)!} \left(\frac{1}{2}\right)^k.$$

Q 6. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in \mathbb{N}^*$,

$$\left(\frac{n}{n+k}\right)^k \leqslant \frac{n! \, n^k}{(n+k)!} \leqslant 1.$$

Q 7. Montrer que la série de fonctions $\sum u_k$ où pour tout $k \in \mathbb{N}^*$, la fonction u_k est définie sur $[0, +\infty[$ par $u_k : x \mapsto (1+kx)^{-k} (1/2)^k$ est normalement convergente sur $[0, +\infty[$.

Q 8. En déduire que pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k>1} \left(1 + \frac{k}{n}\right)^{-k} \left(\frac{1}{2}\right)^k$ converge et que

$$\lim_{n \to +\infty} \sum_{k=1}^{\infty} \left(1 + \frac{k}{n}\right)^{-k} \left(\frac{1}{2}\right)^k = 1.$$

Q 9. En déduire que, lorsque n tend vers $+\infty$,

$$P(S_n > n) \sim \frac{\mathrm{e}^{-n/2}}{n!} \left(\frac{n}{2}\right)^n.$$

Q 10. En déduire, à l'aide de la formule de Stirling, qu'il existe un réel $\alpha \in [0,1[$ tel que $P(S_n > n) = O(\alpha^n)$.

II Quelques résultats sur les matrices

L'objectif de cette partie est de démontrer un certain nombre de résultats d'algèbre linéaire qui serviront dans la partie suivante.

Notations

- n est un entier naturel supérieur ou égal à 2.
- Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $\operatorname{sp}(A)$ l'ensemble des valeurs propres $\operatorname{complexes}$ de A et pour $\lambda \in \operatorname{sp}(A)$, $E_{\lambda}(A) = \ker(A \lambda I_n)$. On note $\rho(A) = \max{\{|\lambda|, \lambda \in \operatorname{sp}(A)\}}$.
- On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est positive si tous ses coefficients sont positifs. On note alors $A \geqslant 0$.
- On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est *strictement positive* si tous ses coefficients sont strictement positifs. On note alors A > 0.
- Un vecteur x de \mathbb{R}^n est dit *positif* si tous ses coefficients sont positifs. On note alors $x \ge 0$.
- Un vecteur x de \mathbb{R}^n est dit *strictement positif* si tous ses coefficients sont strictement positifs. On note alors x > 0.
- On définit une relation d'ordre sur $\mathcal{M}_n(\mathbb{R})$ par $A\geqslant B$ si $A-B\geqslant 0$.
- On définit une relation d'ordre sur \mathbb{R}^n par $x \geqslant y$ si $x y \geqslant 0$.
- Si $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in \mathcal{M}_n(\mathbb{R})$ alors |A| désigne la matrice $|A|=(|a_{i,j}|)_{1\leqslant i,j\leqslant n}\in \mathcal{M}_n(\mathbb{R}).$
- Si $x = (x_i)_{1 \le i \le n} \in \mathbb{C}^n$ alors |x| désigne le vecteur $|x| = (|x_i|)_{1 \le i \le n} \in \mathbb{R}^n$.
- On dit que $\lambda_0 \in \operatorname{sp}(A)$ est une valeur propre dominante de A si, pour tout $\lambda \in \operatorname{sp}(A) \setminus \{\lambda_0\}, |\lambda_0| > |\lambda|$.

On se propose de démontrer les deux propositions suivantes :

— Proposition 1 -

Si $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice strictement positive, alors $\rho(A)$ est une valeur propre dominante de A. Le sous-espace propre associé $\ker(A-\rho(A)I_n)$ est de dimension 1 et est dirigé par un vecteur propre strictement positif.

— Proposition 2

Si $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice strictement positive diagonalisable sur \mathbb{C} , si Y est un vecteur positif non nul de \mathbb{R}^n , alors $\left(\frac{A}{\rho(A)}\right)^p Y$ converge, lorsque p tend vers $+\infty$, soit vers le vecteur nul, soit vers un vecteur directeur strictement positif de $\ker(A-\rho(A)I_n)$.

Dans toute cette partie II, $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice strictement positive.

II.A -

Q 11. Montrer que, pour tout $x \in \mathbb{R}^n$

$$\begin{cases} x \geqslant 0 \implies Ax \geqslant 0, \\ x \geqslant 0 \text{ et } x \neq 0 \implies Ax > 0. \end{cases}$$

Q 12. Montrer que $\forall k \in \mathbb{N}^*, A^k > 0$.

Q 13. En déduire que $\rho(A) > 0$ puis montrer que $\rho\left(\frac{A}{\rho(A)}\right) = 1$.

Q 14. On suppose A diagonalisable sur \mathbb{C} . Montrer que, si $\rho(A) < 1$ alors $\lim_{k \to +\infty} A^k = 0$.

Dans la suite du problème, on admettra que cette dernière implication est vraie même si la matrice A n'est pas diagonalisable sur \mathbb{C} .

II.B — On suppose, dans les sous-parties II.B et II.C, que A est une matrice strictement positive vérifiant $\rho(A) = 1$.

On considère une valeur propre $\lambda \in \mathbb{C}$ de A de module 1 et x un vecteur propre associé à λ . On se propose de démontrer que 1 est valeur propre de A.

Q 15. Montrer que $|x| \leq A|x|$.

Dans les questions qui suivent, on suppose que |x| < A|x|.

Q 16. Montrer qu'il existe $\varepsilon > 0$ tel que $A^2|x| - A|x| > \varepsilon A|x|$.

Q 17. On pose $B = \frac{1}{1+\varepsilon} A$. Montrer que pour tout $k \geqslant 1$, $B^k A|x| \geqslant A|x|$.

Q 18. Déterminer $\lim_{k \to +\infty} B^k$.

Q 19. Conclure.

II.C –

 \mathbf{Q} 20. Montrer que A admet un vecteur propre strictement positif associé à la valeur propre 1.

 \mathbf{Q} 21. Montrer que 1 est la seule valeur propre de module 1 de A.

On pourra admettre sans démonstration que si $z_1, z_2, ..., z_k$ sont des nombres complexes, tous non nuls, tels que $|z_1 + \cdots + z_k| = |z_1| + \cdots + |z_k|$, alors $\forall j \in [\![1,k]\!]$, $\exists \lambda_j \in \mathbb{R}^+$ tel que $z_j = \lambda_j z_1$.

Q 22. Montrer que dim $(\ker(A - I_n)) = 1$.

Q 23. En regroupant les résultats des sous-parties II.B et II.C, justifier qu'on a démontré la proposition 1.

II.D - Dans cette sous-partie, on se propose de démontrer la proposition 2.

On suppose donc que A est strictement positive et diagonalisable sur \mathbb{C} .

Pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, pour tout $p \in \mathbb{N}^*$, on note $Y_p = \left(\frac{A}{\rho(A)}\right)^p Y$.

 $\mathbf{Q} \ \mathbf{24.} \qquad \text{Soit} \ \lambda \in S = \operatorname{sp}(A) \smallsetminus \{\rho(A)\}. \ \text{Soit} \ Y \in \ker(A - \lambda I_n). \ \text{Montrer que la suite} \ (Y_p)_{p \in \mathbb{N}^*} \ \text{converge vers 0}.$

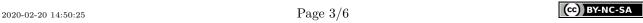
Q 25. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur positif. Montrer que la suite $(Y_p)_{p \in \mathbb{N}^*}$ converge vers le projeté de Y sur $E_{\rho(A)}(A)$ parallèlement à $\bigoplus_{\lambda \in S} E_{\lambda}(A)$. Vérifier que, s'il est non nul, ce dernier vecteur (le projeté de Y) est strictement positif.

Dans la suite du problème, on admet que la proposition 2 se généralise à toute matrice A strictement positive, même non diagonalisable et que, si $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ est un vecteur strictement positif, alors la suite (Y_p) converge vers un vecteur strictement positif dirigeant $E_{\rho(A)}(A)$.

II.E – Cette sous-partie permet de déterminer la valeur propre dominante $\rho(A)$ d'une matrice carrée A strictement positive de taille $n \ge 2$.

Q 26. Justifier que pour tout entier $k \ge 1$, A^k est semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice triangulaire, dont on précisera les coefficients diagonaux.

Q 27. Montrer que $\lim_{k\to+\infty} \frac{\operatorname{tr}(A^{k+1})}{\operatorname{tr}(A^k)} = \rho(A)$.



III Une inégalité pour les chaînes de Markov

Dans toute cette partie III, N est un entier naturel non nul fixé et $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans l'intervalle d'entiers $[\![0,N]\!]$.

On suppose que $\forall n \in \mathbb{N}^*, \ \forall (i_1, i_2, ..., i_{n+1}) \in [0, N]^{n+1},$

$$P(X_{n+1}=i_{n+1}\mid X_n=i_n, X_{n-1}=i_{n-1},..., X_1=i_1)=P(X_{n+1}=i_{n+1}\mid X_n=i_n).$$

On suppose que pour tout $(i,j) \in [0,N]^2$, $P(X_{n+1}=j \mid X_n=i)$ ne dépend pas de n et est strictement positif. On note alors $q_{i,j} = P(X_{n+1}=j \mid X_n=i)$.

On dit que $(X_n)_{n\in\mathbb{N}^*}$ est une chaine de Markov homogène sur [0,N], de matrice de transition Q.

On attire l'attention sur les faits suivants :

- la numérotation des lignes et des colonnes de Q commence à 0;
- Q est une matrice carrée de taille N+1.

Dans toute la suite, pour $n\geqslant 1$ fixé, on pose Π_n la matrice colonne $\begin{pmatrix} P(X_n=0)\\ \vdots\\ P(X_n=N) \end{pmatrix}\in \mathcal{M}_{N+1,1}(\mathbb{R}).$

III.A – Justification de l'existence des lois $(\Pi_n)_{n\geqslant 1}$

Q 28. Justifier que
$$\forall i \in [0, N], \sum_{j=0}^{N} q_{i,j} = 1.$$

Q 29. Justifier que, pour tout
$$n \in \mathbb{N}^*$$
, $\Pi_{n+1} = Q^{\top} \Pi_n$.

$${f Q}$$
 30. En déduire que la loi de X_1 détermine entièrement les lois de toutes les variables aléatoires $X_n, n \in \mathbb{N}^*$.

Dans toute la suite, on considère une telle chaîne de Markov, et on pose

$$--S_n = \sum_{k=1}^n X_k \text{ pour } n \in \mathbb{N}^* \; ;$$

$$-a_{i,j}(t) = q_{i,j}e^{jt}$$
 pour tout $(i,j) \in [0,N]^2$ et tout $t \in \mathbb{R}$;

—
$$z_j(t) = P(X_1 = j) \mathrm{e}^{jt}$$
 pour tout $j \in [\![0, N]\!]$ et tout $t \in \mathbb{R}$;

$$-- \ Z(t) = \begin{pmatrix} z_0(t) \\ \vdots \\ z_N(t) \end{pmatrix} \in \mathcal{M}_{N+1,1}(\mathbb{R})(\mathbb{R}).$$

III.B – Définition de la fonction de taux λ

Soient n un entier naturel non nul et t un réel fixé.

On admet que l'espérance de la variable aléatoire e^{tS_n} est égale

$$E(\mathbf{e}^{t\,S_n}) = \sum_{i=0}^N Y_j^{(n)}(t)$$

où
$$Y^{(n)}(t) = \begin{pmatrix} Y_0^{(n)}(t) \\ \vdots \\ Y_N^{(n)}(t) \end{pmatrix}$$
 est le vecteur colonne défini par $Y^{(n)}(t) = \left(A(t)\right)^{n-1} \, Z(t).$

Q 31. Justifier que A(t) possède une valeur propre dominante $\gamma(t)>0$.

$$\mathbf{Q} \ \mathbf{32.} \quad \text{ Montrer que } \lim_{n \to +\infty} \frac{\ln \left(E(\mathrm{e}^{t\,S_n}) \right)}{n} = \lambda(t) \text{ où } \lambda(t) = \ln(\gamma(t)).$$

III.C — Dans cette sous-partie, on étudie deux programmes écrits en langage Python. On suppose que la bibliothèque numpy a été importée à l'aide de l'instruction

```
import numpy as np
```

On rappelle que les opérations suivantes sont alors disponibles.

- range(n) renvoie la séquence des n premiers entiers $(0 \rightarrow n-1)$.
- np.array(u) crée un nouveau tableau contenant les éléments de la séquence u. La taille et le type des éléments de ce tableau sont déduits du contenu de u.
- a.shape(a) renvoie un tuple donnant la taille du tableau a pour chacune de ses dimensions.
- a.trace(a) donne la trace du tableau a.
- np.exp(a) renvoie un tableau de même forme que le tableau a dont chaque terme est l'exponentielle du terme correspondant du tableau a (exponentielle terme à terme).
- np.dot(a, b) calcule le produit matriciel des tableaux a et b (sous réserve de compatibilité des dimensions).
- x * a renvoie un tableau de même forme que le tableau a correspondant au produit de chaque terme de a par le nombre x.
- a * b renvoie un tableau correspondant au produit terme à terme des deux tableaux a et b. Si a et b n'ont pas le même nombre de dimensions, le plus « petit » est virtuellement étendu afin de correspondre à la forme du plus « grand ». Par exemple si a est une matrice et b un vecteur, b doit avoir le même nombre de composantes que a a de lignes, il est alors virtuellement transformé en matrice avec le même nombre de colonnes que a, chaque colonne valant b.
- **Q 33.** Écrire en langage Python une fonction puiss2k qui prend en argument une matrice carrée M et un entier naturel k et renvoie la matrice M^{2^k} en effectuant k produits matriciels. On pourra exploiter le fait que $M^{2^{k+1}} = M^{2^k}M^{2^k}$.
- Q 34. Expliquer ce que fait la fonction Python maxSp définie par :

```
1  def maxSp(Q:np.ndarray, k:int, t:float) -> float:
2     n = Q.shape[1]
3     E = np.exp(t * np.array(range(n)))
4     A = Q * E
5     B = puiss2k(A, k)
6     C = np.dot(A, B)
7     return C.trace() / B.trace()
```

III.D - Une majoration théorique et son interprétation

On définit, pour tout $x \in \mathbb{R}, \ \lambda^*(x) = \sup_{t \geqslant 0} \big(tx - \lambda(t)\big).$

On admet que cette borne supérieure existe et que la convergence de la suite de fonctions $\left(t\mapsto\frac{\ln(E(\mathrm{e}^{t\,S_n}))}{n}\right)_{n\in\mathbb{N}^*}$ vers la fonction $t\mapsto\ln(\gamma(t))$ démontrée à la question 32 est uniforme sur \mathbb{R}^+ . On admet également dans toute la suite l'existence de $m=\lim_{n\to+\infty}\frac{1}{n}E(S_n)$ ainsi que les propriétés suivantes de λ^* :

$$\begin{cases} \lambda^*(x) = 0 & \text{pour tout } x \leqslant m, \\ \lambda^*(x) > 0 & \text{pour tout } x > m. \end{cases}$$

Dans toute la suite, ε désigne un réel strictement positif.

Q 35. Montrer qu'il existe un rang $n_0 \in \mathbb{N}^*$ tel que, pour tout $t \in \mathbb{R}^+$ et pour tout $n \in \mathbb{N}^*$,

$$n \geqslant n_0 \implies \ln(E(e^{t S_n})) \leqslant n(\lambda(t) + \varepsilon)$$

Q 36. À l'aide de l'inégalité de Markov appliquée à la variable aléatoire e^{tS_n} , montrer que pour a > 1, $n \ge n_0$ et $t \ge 0$,

$$P(S_n \geqslant nam) \leqslant e^{-ntam} e^{n(\lambda(t)+\varepsilon)}$$
.

Q 37. En déduire que pour $n \ge n_0$,

$$P(S_n\geqslant nam)\leqslant \mathrm{e}^{-n(\lambda^*(am)-\varepsilon)}.$$

 ${f Q}$ 38. Donner un sens concret à m en rapport avec le processus industriel étudié et interpréter l'inégalité précédente. On pourra établir un lien intuitif avec la loi des grands nombres.

III.E — Cette sous-partie constitue une application numérique et peut être traitée en admettant les résultats précédents.

On dispose de deux suites finies de réels $0=t_1 < t_2 < \cdots < t_K \ (K\geqslant 2)$ et $x_1 < x_2 < \cdots < x_L \ (L\geqslant 2)$. La formule de la question 32 appliquée en t_i avec n suffisamment grand permet d'estimer $\lambda(t_i)$ par une valeur approchée $\hat{\lambda}(t_i)$.

Q 39. Justifier que pour tout $i \in \{1, ..., L\}$,

$$\hat{\lambda}^*(x_i) = \max_{1 \leqslant j \leqslant K} \bigl(t_j x_i - \hat{\lambda}(t_j)\bigr)$$

constitue une valeur approchée raisonnable de $\lambda^*(x_i).$

Le tableau 1 donne ces valeurs pour L=20.

x_i	4,50	4,55	4,60	4,65	4,70
$\hat{\lambda}^*(x_i)$	4.1×10^{-12}	4.1×10^{-12}	4.1×10^{-12}	4.1×10^{-12}	4.1×10^{-12}
x_i	4,75	4,80	4,85	4,90	4,95
$\hat{\lambda}^*(x_i)$	5.1×10^{-4}	5.5×10^{-3}	1.1×10^{-2}	$1,\!6\times10^{-2}$	$2,1 \times 10^{-2}$
x_i	5,00	5,05	5,10	5,15	5,20
$\hat{\lambda}^*(x_i)$	$2,\!6\times10^{-2}$	$3.1 imes 10^{-2}$	$3.6 imes 10^{-2}$	4.1×10^{-2}	4.6×10^{-2}
x_i	5,25	5,30	5,35	5,40	5,45
$\hat{\lambda}^*(x_i)$	$5{,}1\times10^{-2}$	5.6×10^{-2}	6.1×10^{-2}	6.6×10^{-2}	7.1×10^{-2}

Tableau 1

Q 40. À l'aide du tableau 1, donner un encadrement approximatif de la valeur de m et la valeur d'un réel h > 0 tel qu'il existe un rang $n_0 \in \mathbb{N}^*$ vérifiant pour tout $n \ge n_0$,

$$P(S_n>1,1\times nm)\leqslant \mathrm{e}^{-nh}.$$

 \bullet \bullet FIN \bullet \bullet

