

Mathématiques 1

PC

202

CONCOURS CENTRALE • SUPÉLEC

4 heures

Calculatrice autorisée

Étude de certaines matrices symplectiques

L'objet du problème est de définir et étudier la notion de matrice symplectique, et d'établir des résultats de réduction dans certains cas particuliers.

Vocabulaire et notations

Dans tout le problème, n désigne un entier naturel non nul et J_n la matrice carrée de $\mathcal{M}_{2n}(\mathbb{R})$ définie par blocs par

$$J_n = \begin{pmatrix} 0_{n,n} & I_n \\ -I_n & 0_{n,n} \end{pmatrix}$$

où $0_{n,n}$ est la matrice nulle à n lignes et n colonnes et I_n est la matrice identité de même taille.

Si p et q sont deux entiers naturels non nuls, la matrice transposée de toute matrice M de $\mathcal{M}_{p,q}(\mathbb{R})$ est notée M^{\top} .

On dit qu'une matrice M de $\mathcal{M}_{2n}(\mathbb{R})$ est symplectique si et seulement si $M^{\top}J_nM=J_n$. On désigne par $\mathrm{Sp}_{2n}(\mathbb{R})$ l'ensemble des matrices symplectiques de taille $2n\times 2n$.

On note $\mathcal{O}_{2n}(\mathbb{R})$ le groupe orthogonal de $\mathcal{M}_{2n}(\mathbb{R})$, $\mathcal{S}_{2n}(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_{2n}(\mathbb{R})$ et $\mathcal{A}_{2n}(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_{2n}(\mathbb{R})$.

Soit E un \mathbb{R} -espace vectoriel. On appelle forme bilinéaire sur E toute application ψ définie sur $E \times E$ et à valeurs dans \mathbb{R} telle que pour tout $Y \in E$,

$$X \mapsto \psi(X, Y)$$
 et $X \mapsto \psi(Y, X)$

soient toutes les deux linéaires sur E.

Soit ψ une forme bilinéaire ; ψ est dite alternée si et seulement si, pour tout $X \in E$, $\psi(X,X) = 0$; ψ est dite antisymétrique si et seulement si, pour tout $(X,Y) \in E^2$, $\psi(X,Y) = -\psi(Y,X)$.

Si i et j sont deux entiers naturels, on note $\delta_{i,j}$ le nombre qui vaut 1 si i=j et qui vaut 0 sinon.

On note e_i la matrice colonne élémentaire dont le seul coefficient non nul vaut 1 et est placé sur la ligne numéro i.

On munit $\mathcal{M}_{2n,1}(\mathbb{R})$ du produit scalaire canonique noté $\langle \cdot, \cdot \rangle$ et de la norme euclidienne associée, notée $\| \cdot \|$. En identifiant $\mathcal{M}_1(\mathbb{R})$ et \mathbb{R} , on a, pour tous X et Y dans $\mathcal{M}_{2n,1}(\mathbb{R})$,

$$\langle X,Y\rangle = X^\top Y \qquad \text{et} \qquad \|X\|^2 = X^\top X.$$

Si $X \in \mathcal{M}_{2n,1}(\mathbb{R}), \ X^{\perp}$ désigne l'orthogonal de X, c'est-à-dire l'ensemble des éléments Y de $\mathcal{M}_{2n,1}(\mathbb{R})$ tels que $\langle X,Y \rangle = 0$. Si F est un sous-espace vectoriel de $\mathcal{M}_{2n,1}(\mathbb{R}), F^{\perp}$ désignera l'orthogonal de F, c'est-à-dire l'ensemble des éléments de $\mathcal{M}_{2n,1}(\mathbb{R})$ qui sont orthogonaux à tous les éléments de F.

Si A est une matrice de $\mathcal{M}_{2n}(\mathbb{R})$, on notera $\operatorname{sp}_{\mathbb{R}}(A)$ l'ensemble des valeurs propres réelles de A.

Si A est une matrice de $\mathcal{M}_{2n}(\mathbb{R})$ et λ est une de ses valeurs propres, on notera E_{λ} le sous-espace propre de A associé à la valeur propre λ .

Soit E un espace vectoriel et $X_1,...,X_p$ des vecteurs de E. On note $\mathrm{Vect}(X_1,...,X_p)$ l'espace vectoriel engendré par $X_1,...,X_p$.

Soit A une matrice de $\mathcal{M}_{2n}(\mathbb{R})$ et F une partie de $\mathcal{M}_{2n,1}(\mathbb{R})$. On dit que F est stable par A si et seulement si, pour tout X dans F, AX est un élément de F.

I Cas des matrices de taille 2×2

Q 1. Dans cette question uniquement, n est un entier naturel non nul quelconque. Déterminer J_n^2 et montrer que $J_n \in \operatorname{Sp}_{2n}(\mathbb{R}) \cap \mathcal{A}_{2n}(\mathbb{R})$.

Dans la suite de cette partie, n = 1.

- **Q 2.** Montrer qu'une matrice de taille 2×2 est symplectique si et seulement si son déterminant est égal à 1.
- **Q 3.** Soit M une matrice orthogonale de taille 2×2 . On note $M_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et $M_2 = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ les deux colonnes de M. Montrer l'équivalence

$$M$$
 est symplectique $\iff M_2 = -J_1 M_1$.

- **Q 4.** Soit $X_1 \in \mathcal{M}_{2,1}(\mathbb{R})$ de norme 1. Montrer que la matrice carrée constituée des colonnes X_1 et $-J_1X_1$ est à la fois orthogonale et symplectique.
- **Q 5.** Soit M une matrice de taille 2×2 symétrique et symplectique. Montrer que M est diagonalisable et que ses valeurs propres sont inverses l'une de l'autre. Montrer qu'il existe une matrice P à la fois orthogonale et symplectique telle que $P^{-1}MP$ soit diagonale.
- **Q 6.** Déterminer les matrices de taille 2×2 à la fois antisymétriques et symplectiques et montrer qu'elles ne sont pas diagonalisables dans \mathbb{R} .

II Cas des matrices symplectiques et orthogonales

Soit K une matrice antisymétrique et φ l'application de $(\mathcal{M}_{2n,1}(\mathbb{R}))^2$ dans \mathbb{R} telle que

$$\forall (X,Y) \in \left(\mathcal{M}_{2n,1}(\mathbb{R})\right)^2, \qquad \varphi(X,Y) = X^\top K Y.$$

(On identifie de nouveau $\mathcal{M}_1(\mathbb{R})$ et \mathbb{R} .)

- **Q 7.** Montrer que φ est une forme bilinéaire sur $\mathcal{M}_{2n,1}(\mathbb{R})$.
- **Q 8.** En calculant de deux manières $\varphi(X,X)^{\top}$, montrer que φ est alternée. Montrer de même que φ est antisymétrique.

Dans toute la suite du sujet, $K = J_n$.

$$\mathbf{Q} \ \mathbf{9.} \qquad \text{Pour tout } X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{2n} \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{R}) \text{ et pour tout } Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{2n} \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{R}), \text{ montrer l'égalité}$$

$$\varphi(X,Y) = \sum_{k=1}^n (x_k y_{k+n} - x_{k+n} y_k).$$

- **Q 10.** Montrer que pour tout $(i,j) \in \{1,...,2n\}^2$, $\varphi(e_i,e_j) = \delta_{i+n,j} \delta_{i,j+n}$ (on pourra commencer par le cas où $(i,j) \in \{1,...,n\}^2$ puis généraliser).
- $\mathbf{Q} \ \mathbf{11.} \quad \text{Montrer que pour tout } X \in \mathcal{M}_{2n,1}(\mathbb{R}), \, J_nX \in X^{\perp} \text{ et calculer } \varphi(J_nX,X).$
- **Q 12.** Si $Y \in \mathcal{M}_{2n,1}(\mathbb{R})$, on note Y^{J_n} l'ensemble des vecteurs Z de $\mathcal{M}_{2n,1}(\mathbb{R})$ tels que $\varphi(Y,Z)=0$. Montrer que $X^{J_n}=(J_nX)^{\perp}$.
- **Q 13.** Soit P une matrice symplectique et orthogonale dont les colonnes sont notées $X_1, ..., X_{2n}$. Montrer que, pour tout $(i, j) \in \{1, ..., 2n\}^2$,

$$\begin{cases} \|X_i\| = 1 \\ i \neq j \implies X_i \perp X_j \\ \varphi(X_i, X_j) = \delta_{i+n,j} - \delta_{i,j+n} \end{cases}$$

- **Q 14.** Sous les mêmes hypothèses, montrer que, pour tout $i \in \{1,...,n\}, X_i^{J_n} = X_{i+n}^{\perp}.$
- **Q 15.** Sous les mêmes hypothèses, montrer que, pour tout $i \in \{1, ..., n\}$, $X_{i+n} = -J_n X_i$.

III Quelques généralités sur les matrices symplectiques

- **Q 16.** Montrer que le déterminant d'une matrice symplectique vaut soit 1 soit -1.
- Q 17. Montrer que l'inverse d'une matrice symplectique est une matrice symplectique.
- **Q 18.** Montrer que le produit de deux matrices symplectiques est une matrice symplectique. L'ensemble $\mathrm{Sp}_{2n}(\mathbb{R})$ est-il un sous-espace vectoriel de $\mathcal{M}_{2n}(\mathbb{R})$?

IV Réduction des matrices symétriques et symplectiques

Le but de cette partie est de montrer que, si $M \in \mathcal{S}_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$, il existe $P \in \mathcal{O}_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$ tel que $P^{\top}MP$ est diagonale de coefficients diagonaux $d_1,...,d_{2n}$ avec pour tout $k \in \{1,...,n\}, d_{k+n} = 1/d_k$.

IV.A - Propriété

Soit $M \in \mathcal{S}_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$.

Q 19. Montrer que si λ est valeur propre de M, $1/\lambda$ est également valeur propre de M. Donner un vecteur propre associé.

Q 20. Soit $\lambda \in \operatorname{sp}_{\mathbb{R}}(M)$ et $p = \dim E_{\lambda}$. Soit $(X_1, ..., X_p)$ une base de E_{λ} . Montrer que $(J_n X_1, ..., J_n X_p)$ est une base de $E_{1/\lambda}$ et que

$$\dim(E_{\lambda}) = \dim(E_{1/\lambda}).$$

Q 21. Soient $Y_1,...,Y_p$ des vecteurs de $\mathcal{M}_{2n,1}(\mathbb{R})$. Soit $Y\in\mathcal{M}_{2n,1}(\mathbb{R})$. Montrer l'implication

$$Y \in \left(\operatorname{Vect}(Y_1,...,Y_p,J_nY_1,...,J_nY_p)\right)^{\perp} \implies J_nY \in \left(\operatorname{Vect}(Y_1,...,Y_p,Y,J_nY_1,...,J_nY_p)\right)^{\perp}.$$

Q 22. Dans cette question $\lambda=1$. Montrer que E_1 est de dimension paire et qu'il existe une base de E_1 orthonormée de la forme $(X_1,...,X_p,J_nX_1,...,J_nX_p)$ où 2p est la dimension de E_1 .

Q 23. Qu'en est-il pour E_{-1} ?

Q 24. Démontrer la propriété annoncée au début de la partie.

IV.B - Mise en application sur un exemple

Dans la fin de cette partie, on note A la matrice

$$A = \frac{1}{8} \begin{pmatrix} 9 & 1 & 3 & 3 \\ 1 & 9 & 3 & 3 \\ 3 & 3 & 9 & 1 \\ 3 & 3 & 1 & 9 \end{pmatrix}.$$

Q 25. Montrer que $A \in \mathcal{S}_4(\mathbb{R}) \cap \operatorname{Sp}_4(\mathbb{R})$.

Q 26. Construire une matrice orthogonale et symplectique P telle que $P^{\top}AP$ soit diagonale.

V Étude du cas des matrices antisymétriques

V.A - Un peu de théorie

Soit $M \in \mathcal{A}_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$. Soit m l'application linéaire canoniquement associée à M.

Q 27. Montrer l'égalité $\operatorname{sp}_{\mathbb{D}}(M) = \emptyset$.

Q 28. Montrer qu'il existe $P \in \mathcal{O}_{2n}(\mathbb{R}) \cap \operatorname{Sp}_{2n}(\mathbb{R})$ tel que $P^{\top}M^2P$ soit diagonale de coefficients diagonaux $d_1,...,d_{2n}$ avec pour tout $k \in \{1,...,n\},\ d_{k+n}=1/d_k$.

Dans toute la suite de cette sous-partie, X désigne un vecteur propre de M^2 de norme 1 associé à une certaine valeur propre λ .

Q 29. Montrer que MX, J_nX et J_nMX sont des vecteurs propres de M^2 et donner les valeurs propres associées à chacun de ces vecteurs.

Q 30. Dans cette question et dans la suite, on note $F = \text{Vect}(X, MX, J_nX, J_nMX)$. Montrer que F est stable par M et par J_n .

 \mathbf{Q} 31. Montrer que toutes les valeurs propres de M^2 sont strictement négatives.

Q 32. Justifier que si $\lambda \neq -1$, F est un espace vectoriel de dimension 4. Montrer que, dans ce cas,

$$\left(X,\frac{-1}{\sqrt{-\lambda}}MX,-J_nX,\frac{1}{\sqrt{-\lambda}}J_nMX\right)$$

est une base orthonormée de F. Donner alors la matrice de l'application m_F induite par m sur F dans la base obtenue.

Q 33. Montrer que F^{\perp} est stable par M et par J_n .

Q 34. Montrer qu'il existe un entier naturel non nul q et des sous-espaces vectoriels de $\mathcal{M}_{2n,1}(\mathbb{R})$, notés $F_1,...,F_q$ tels que

- (a) $F_1 \oplus \cdots \oplus F_q = \mathcal{M}_{2n,1}(\mathbb{R})$;
- (b) $\forall i \in \{1,...,q\}, \, F_i \text{ est stable par } M \text{ et par } J_n \; ;$
- (c) $\forall i \in \{1,...,q\}, \, F_i^\perp \text{ est stable par } M \text{ et par } J_n \; ;$
- $(\mathrm{d}) \qquad \forall (i,j) \in \{1,...,q\}^2, \ i \neq j \implies \forall (Y,Z) \in F_i \times F_j, \langle Y,Z \rangle = 0 = \varphi(Y,Z) \ ;$
- (e) $\forall i \in \{1, ..., q\}, \dim F_i \in \{2, 4\}$;
- (f) $\forall i \in \{1,...,q\}$, la matrice de l'application m_{F_i} induite par m sur F_i dans une certaine base est de la forme

$$J_1 \qquad \text{ou} \qquad \begin{pmatrix} \sqrt{-\lambda}J_1 & 0_{2,2} \\ 0_{2,2} & \frac{1}{\sqrt{-\lambda}}J_1 \end{pmatrix}.$$

V.B - Mise en application

Dans la fin de cette partie, on note B la matrice

$$B = \frac{1}{4} \begin{pmatrix} 0 & -5 & 0 & -3 \\ 5 & 0 & 3 & 0 \\ 0 & -3 & 0 & -5 \\ 3 & 0 & 5 & 0 \end{pmatrix}.$$

- **Q 35.** Calculer $B^2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.
- ${f Q}$ 36. Déterminer un réel a et une matrice P tels que

$$P \in \mathcal{O}_4(\mathbb{R}) \cap \operatorname{Sp}_4(\mathbb{R}) \qquad \text{et} \qquad P^\top B P = \begin{pmatrix} 0 & a & 0 & 0 \\ -a & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/a \\ 0 & 0 & -1/a & 0 \end{pmatrix}.$$

 \bullet \bullet FIN \bullet \bullet

