

Mathématiques 2

PSI

2019

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

La partie I de ce problème permet de démontrer quelques résultats sur les matrices et les endomorphismes nilpotents et aborde l'étude de cas particuliers qui seront généralisés dans la partie II.

Notations et rappels

Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

Si $M \in \mathcal{M}_n(\mathbb{C})$, on note M^{\top} la transposée de la matrice M.

Si M est une matrice de $\mathcal{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0=I_n$ et, pour tout entier naturel k, $M^{k+1}=MM^k$.

De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \mathrm{Id}_E$ et, pour tout entier naturel k, $u^{k+1} = u \circ u^k$.

Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0$ s'appelle l'indice de nilpotence de M.

Soit \mathcal{B} une base de E, un endomorphisme de E est nilpotent d'indice p si sa matrice dans \mathcal{B} est nilpotente d'indice p.

On pose
$$J_1=(0)$$
 et, pour $\alpha\geqslant 2,$
$$J_\alpha=\begin{pmatrix}0&\cdots&\cdots&\cdots&0\\1&\ddots&&&\vdots\\0&\ddots&\ddots&&\vdots\\\vdots&\ddots&\ddots&\ddots&\vdots\\0&\cdots&0&1&0\end{pmatrix}\in\mathcal{M}_\alpha(\mathbb{C}).$$

Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs

$$\operatorname{diag}(A,B) = \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right) \in \mathcal{M}_{n+m}(\mathbb{C}).$$

Plus généralement, si $A_1\in\mathcal{M}_{n_1}(\mathbb{C}),\,A_2\in\mathcal{M}_{n_2}(\mathbb{C}),\,...,\,A_k\in\mathcal{M}_{n_k}(\mathbb{C}),$ on note

$$\operatorname{diag}(A_1,A_2,...,A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1+n_2+\cdots+n_k}(\mathbb{C}).$$

I Premiers résultats

Q 1. Que peut-on dire d'un endomorphisme nilpotent d'indice 1?

I.A – Réduction d'une matrice de $\mathcal{M}_2(\mathbb{C})$ nilpotente d'indice 2

On suppose que n=2. Soit u un endomorphisme de E nilpotent d'indice $p\geqslant 2$.

Q 2. Montrer qu'il existe un vecteur x de E tel que $u^{p-1}(x) \neq 0$.

Q 3. Vérifier que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre. En déduire que p=2.

Q 4. Montrer que $\operatorname{Ker} u = \operatorname{Im} u$.

Q 5. Construire une base de E dans laquelle la matrice de u est égale à J_2 .

Q 6. En déduire que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{C})$ sont exactement les matrices de trace nulle et de déterminant nul.

I.B – Réduction d'une matrice de $\mathcal{M}_n(\mathbb{C})$ nilpotente d'indice 2

On suppose que $n \ge 3$. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang r.

- **Q 7.** Montrer que $\operatorname{Im} u \subset \operatorname{Ker} u$ et que $2r \leqslant n$.
- **Q 8.** On suppose que $\operatorname{Im} u = \operatorname{Ker} u$. Montrer qu'il existe des vecteurs $e_1, e_2, ..., e_r$ de E tels que $(e_1, u(e_1), e_2, u(e_2), ..., e_r, u(e_r))$ est une base de E.
- \mathbf{Q} 9. Donner la matrice de u dans cette base.
- **Q 10.** On suppose $\operatorname{Im} u \neq \operatorname{Ker} u$. Montrer qu'il existe des vecteurs $e_1, e_2, ..., e_r$ de E et des vecteurs $v_1, v_2, ..., v_{n-2r}$ appartenant à $\operatorname{Ker} u$ tels que $(e_1, u(e_1), e_2, u(e_2), ..., e_r, u(e_r), v_1, ..., v_{n-2r})$ est une base de E.
- **Q 11.** Quelle est la matrice de u dans cette base?

I.C - Valeurs propres, polynôme caractéristique, polynômes annulateurs d'une matrice nilpotente tente

Dans cette sous-partie, A désigne une matrice de $\mathcal{M}_n(\mathbb{C})$.

- \mathbf{Q} 12. Montrer que, si A est nilpotente, alors 0 est l'unique valeur propre de A.
- **Q 13.** Quelles sont les matrices de $\mathcal{M}_n(\mathbb{C})$ à la fois nilpotentes et diagonalisables ?
- **Q 14.** Montrer qu'une matrice est nilpotente si, et seulement si, son polynôme caractéristique est égal à X^n .
- **Q 15.** Montrer la réciproque de la question 12.
- **Q 16.** Montrer qu'une matrice triangulaire de $\mathcal{M}_n(\mathbb{C})$ à diagonale nulle est nilpotente et qu'une matrice nilpotente est semblable à une matrice triangulaire à diagonale nulle.
- **Q 17.** Démontrer que, si A est une matrice nilpotente d'indice p, alors tout polynôme de $\mathbb{C}[X]$ multiple de X^p est un polynôme annulateur de A.

On suppose que P est un polynôme annulateur de A nilpotente.

- **Q 18.** Démontrer que 0 est racine de P.
- **Q 19.** On note m la multiplicité de 0 dans P, ce qui permet d'écrire $P = X^m Q$ où Q est un polynôme de $\mathbb{C}[X]$ tel que $Q(0) \neq 0$. Démontrer que Q(A) est inversible puis que P est un multiple de X^p dans $\mathbb{C}[X]$.

I.D - Racines carrées de matrices nilpotentes

Pour une matrice $V \in \mathcal{M}_n(\mathbb{C})$ donnée, on dit qu'une matrice $R \in \mathcal{M}_n(\mathbb{C})$ est une racine carrée de V si $R^2 = V$. On se propose d'étudier l'existence et les valeurs de racines carrées éventuelles de certaines matrices nilpotentes.

I.D.1) On note
$$A = \begin{pmatrix} 1 & 3 & -7 \\ 2 & 6 & -14 \\ 1 & 3 & -7 \end{pmatrix}$$
 et u l'endomorphisme de \mathbb{C}^3 canoniquement associé à A .

- **Q 20.** Calculer la trace et le rang de A. En déduire, sans aucun calcul, le polynôme caractéristique de A. Montrer que A est nilpotente et donner son indice de nilpotence.
- **Q 21.** Démontrer que A est semblable à la matrice $\operatorname{diag}(J_2, J_1)$. Donner la valeur d'une matrice P inversible telle que $A = P \operatorname{diag}(J_2, J_1) P^{-1}$.

On cherche à déterminer l'ensemble des matrices $R \in \mathcal{M}_3(\mathbb{C})$ telles que $R^2 = A$. On note ρ l'endomorphisme canoniquement associé à R.

- **Q 22.** Démontrer que Im u et Ker u sont stables par ρ et que ρ est nilpotent.
- ${f Q}$ 23. En déduire l'ensemble des racines carrées de A.

On pourra considérer $R' = P^{-1}RP$.

2019-04-02 10:07:14

- **I.D.2**) On se propose dans cette question d'étudier l'équation matricielle $R^2 = J_3$.
- **Q 24.** Soit R une solution de cette équation. Donner les valeurs de R^4 et R^6 , puis l'ensemble des solutions de l'équation.

- **I.D.3)** Plus généralement, soit $V \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'indice p. On se propose d'étudier l'équation $R^2 = V$.
- **Q 25.** Montrer que, si 2p-1 > n, alors il n'existe aucune solution.
- **Q 26.** Pour toute valeur de l'entier $n \ge 3$, exhiber une matrice $V \in \mathcal{M}_n(\mathbb{C})$, nilpotente d'indice $p \ge 2$ et admettant au moins une racine carrée.

II Deuxième partie

On cherche dans cette partie à généraliser les résultats des sous-parties I.A et I.B.

II.A - Réduction des matrices nilpotentes

On suppose $n \ge 2$. Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.

- **Q 27.** Démontrer que $\operatorname{Im} u$ est stable par u et que l'endomorphisme induit par u sur $\operatorname{Im} u$ est nilpotent. Préciser son indice de nilpotence.
- **Q 28.** Pour tout vecteur x non nul de E, on note $C_u(x)$ l'espace vectoriel engendré par les $\left(u^k(x)\right)_{k\in\mathbb{N}}$; démontrer que $C_u(x)$ est stable par u et qu'il existe un plus petit entier $s(x)\geqslant 1$ tel que $u^{s(x)}(x)=0$.
- **Q 29.** Démontrer que $(x, u(x), ..., u^{s(x)-1}(x))$ est une base de $C_u(x)$ et donner la matrice, dans cette base, de l'endomorphisme induit par u sur $C_u(x)$.
- **Q 30.** Démontrer par récurrence sur p qu'il existe des vecteurs $x_1, ..., x_t$ de E tels que $E = \bigoplus_{i=1}^t C_u(x_i)$.

On pourra appliquer l'hypothèse de récurrence à l'endomorphisme induit par u sur $\mathrm{Im}(u)$.

Q 31. Donner la matrice de u dans une base adaptée à la décomposition $E = \bigoplus_{i=1}^t C_u(x_i)$.

II.B - Partitions d'entiers

On appelle partition de l'entier n toute suite finie $(\alpha_1, ..., \alpha_k) \in (\mathbb{N}^*)^k$ telle que

$$\alpha_1 \geqslant \cdots \geqslant \alpha_k$$
 et $\alpha_1 + \cdots + \alpha_k = n$.

On note Γ_n l'ensemble des partitions de l'entier n. Ainsi, $\Gamma_1 = \{(1)\}, \Gamma_2 = \{(2), (1, 1)\}, \Gamma_3 = \{(3), (2, 1), (1, 1, 1)\}.$

Soit u un endomorphisme de E nilpotent d'indice p et de rang r.

- **Q 32.** Montrer qu'il existe une partition $\sigma=(\alpha_1,...,\alpha_k)$ de n et une base $\mathcal B$ de E dans laquelle la matrice de u est égale à la matrice $N_\sigma=\operatorname{diag}(J_{\alpha_1},...,J_{\alpha_k})$.
- **Q 33.** Soit α un entier naturel non nul. Calculer le rang de J_{α}^{j} pour tout entier naturel j. En déduire que J_{α} est nilpotente et préciser son indice de nilpotence.
- **Q 34.** En déduire la valeur de α_1 .
- $\mathbf{Q} \ \mathbf{35.} \quad \text{ Pour } j \in \mathbb{N} \text{, on note } \Lambda_j = \{i \in \llbracket 1, k \rrbracket \mid \alpha_i \geqslant j\}. \text{ D\'emontrer que } \operatorname{rg}(N_\sigma^j) = \sum_{i \in \Lambda_i} (\alpha_i j).$
- **Q 36.** Démontrer que, pour tout $j \in \mathbb{N}^*$, l'entier $d_j = \operatorname{rg}(u^{j-1}) \operatorname{rg}(u^j)$ est égal au nombre de blocs J_{α_i} dont la taille α_i est supérieure ou égale à j.
- **Q 37.** Donner la valeur de l'entier k, nombre de blocs J_{α_i} intervenant dans N_{σ} .
- **Q 38.** Pour tout entier j compris entre 1 et n, exprimer le nombre de blocs J_{α_i} de taille exactement égale à j.
- **Q 39.** On suppose qu'il existe une partition σ' de l'entier n et une base \mathcal{B}' de E telles que la matrice de u dans \mathcal{B}' soit égale à $N_{\sigma'}$. Montrer que $\sigma = \sigma'$.
- **Q 40.** Quel est le cardinal maximal d'un ensemble de matrices nilpotentes, toutes de même taille n, telles qu'il n'y ait pas dans cet ensemble deux matrices semblables?

II.C - Applications

Q 41. Soient
$$A$$
 la matrice $\begin{pmatrix} 0 & -1 & 2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix}$ et u l'endomorphisme canoniquement associé à A .

Déterminer la partition σ de l'entier 5 associée à u et donner la matrice N_{σ} .

- **Q 42.** À l'aide du résultat de la question 31, démontrer que si $M \in \mathcal{M}_n(\mathbb{C})$ est nilpotente, alors M, 2M et M^{\top} sont semblables.
- \mathbf{Q} 43. À l'aide du résultat de la question 15, démontrer que si M et 2M sont semblables, alors M est nilpotente.

II.D - Un algorithme de calcul du nombre de partitions de n

Pour $j \in \mathbb{N}$, on note $Y_{n,j}$ l'ensemble des partitions dont le premier terme α_1 est inférieur ou égal à j et $y_{n,j}$ le cardinal de $Y_{n,j}$; on pose $y_{0,0} = 1$.

Q 44. Calculer $y_{n,1}$.

On se propose de montrer que, si $2 \le j \le n$, alors $y_{n,j} = y_{n,j-1} + y_{n-j,\min(j,n-j)}$.

- **Q 45.** Démontrer que cette égalité est vraie pour j = n.
- ${\bf Q}$ 46. Pour j < n, vérifier que $y_{n,j} = y_{n,j-1} + y_{n-j,j}.$ Conclure.
- **Q 47.** Calculer les $y_{n,j}$ pour $1 \leqslant j \leqslant n \leqslant 5$ en présentant les résultats sous la forme d'un tableau.
- **Q 48.** Écrire une fonction Python qui prend en argument un entier $n \ge 1$ et qui renvoie $y_{n,n}$.
- **Q 49.** Comparer ce résultat à celui de la question 40.

 \bullet \bullet FIN \bullet \bullet