

Mathématiques 1

PC

2019

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Réduction de sous-algèbres de $\mathcal{L}(E)$

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On note $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E et $\mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées à n lignes et n colonnes et à coefficients dans \mathbb{K} .

On note $\mathrm{Mat}_{\mathcal{B}}(u)$ la matrice, dans la base \mathcal{B} de E, de l'endomorphisme u de $\mathcal{L}(E)$.

La matrice transposée de toute matrice M de $\mathcal{M}_n(\mathbb{K})$ est notée $M^\top.$

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une sous-algèbre de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire tel que $u \circ v$ appartient à \mathcal{A} quels que soient les éléments u et v de \mathcal{A} . (Remarquer qu'on ne demande pas que Id_E appartienne à \mathcal{A} .)

On dit qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est commutative si pour tous u et v dans \mathcal{A} , $u \circ v = v \circ u$.

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite diagonalisable (respectivement trigonalisable) s'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u)$ soit diagonale (respectivement triangulaire supérieure) pour tout u de \mathcal{A} .

On dit qu'une partie \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ si \mathcal{A} est un sous-espace vectoriel stable pour le produit matriciel. Elle est dite commutative si, pour toutes matrices A et B de \mathcal{A} , AB=BA. Une sous-algèbre \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable (respectivement trigonalisable) s'il existe $P \in \mathrm{GL}_n(\mathbb{K})$ telle que pour toute matrice M de \mathcal{A} , $P^{-1}MP$ soit diagonale (respectivement triangulaire supérieure).

Si \mathcal{B} est une base de E, l'application $\operatorname{Mat}_{\mathcal{B}}: \mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est une bijection qui envoie une sous-algèbre (respectivement commutative, diagonalisable, trigonalisable) de $\mathcal{L}(E)$ sur une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ (respectivement commutative, diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est strict si F est différent de E.

On désigne par $S_n(\mathbb{K})$ (respectivement $A_n(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$ (respectivement antisymétriques). On désigne par $T_n(\mathbb{K})$ (respectivement $T_n^+(\mathbb{K})$) le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices triangulaires supérieures à coefficients diagonaux nuls).

I Exemples de sous-algèbres

- I.A Exemples de sous-algèbres de $\mathcal{M}_n(\mathbb{K})$
- **Q 1.** Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- **Q 2.** Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
- **Q 3.** On suppose $n \geqslant 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- I.B Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension p et \mathcal{A}_F l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal{A}_F = \{u \in \mathcal{L}(E) \mid u(F) \subset F\}$.

- **Q 4.** Montrer que \mathcal{A}_F est une sous-algèbre de $\mathcal{L}(E)$.
- **Q 5.** Montrer que dim $A_F = n^2 pn + p^2$.

On pourra considérer une base de E dans laquelle la matrice de tout élément de \mathcal{A}_F est triangulaire par blocs.

Q 6. Déterminer $\max_{1 \le p \le n-1} (n^2 - pn + p^2)$.

I.C – Exemples de sous-algèbres de $\mathcal{M}_2(\mathbb{K})$ diagonalisables et non diagonalisables

Soit $\Gamma(\mathbb{K})$ le sous-ensemble de $\mathcal{M}_2(\mathbb{K})$ constitué des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{K}^2$.

- **Q 7.** Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- **Q 8.** Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- **Q 9.** Montrer que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur \mathbb{C} . En déduire que $\Gamma(\mathbb{C})$ est une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{C})$.

II Une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$

Dans cette partie, on suppose $n \ge 2$.

Pour tout $(a_0, ..., a_{n-1}) \in \mathbb{R}^n$, on pose

$$J(a_0,...,a_{n-1}) = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

Ainsi, le coefficient d'indice (i,j) de $J(a_0,...,a_{n-1})$ est a_{i-j} si $i \geqslant j$ et a_{i-j+n} si i < j.

Soit $\mathcal A$ l'ensemble des matrices de $\mathcal M_n(\mathbb R)$ de la forme $J(a_0,...,a_{n-1})$ où $(a_0,...,a_{n-1})\in\mathbb R^n$.

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice canoniquement associée à l'endomorphisme $\varphi \in \mathcal{L}(\mathbb{R}^n)$ défini par $\varphi : e_j \mapsto e_{j+1}$ si $j \in \{1,...,n-1\}$ et $\varphi(e_n) = e_1$, où $(e_1,...,e_n)$ est la base canonique de \mathbb{R}^n .

II.A - Calcul des puissances de J

- **Q 10.** Préciser les matrices J et J^2 . (On pourra distinguer les cas n=2 et n>2.)
- **Q 11.** Préciser les matrices J^n et J^k pour $2 \le k \le n-1$.
- **Q 12.** Quel est le lien entre la matrice $J(a_0,...,a_{n-1})$ et les J^k , où $0 \le k \le n-1$?

II.B – Une base de $\mathcal A$

- **Q 13.** Montrer que $(I_n, J, J^2, ..., J^{n-1})$ est une base de \mathcal{A} .
- **Q 14.** Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M commute avec J si et seulement si M commute avec tout élément de A.
- **Q 15.** Montrer que \mathcal{A} est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

II.C - Diagonalisation de J

- \mathbf{Q} 16. Déterminer le polynôme caractéristique de J.
- **Q 17.** Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- **Q 18.** La matrice J est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?
- \mathbf{Q} 19. Déterminer les valeurs propres complexes de J et les espaces propres associés.

II.D – Diagonalisation de A

- **Q 20.** Le sous-ensemble $\mathcal A$ est-il une sous-algèbre de $\mathcal M_n(\mathbb C)$?
- **Q 21.** Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que, pour toute matrice $A \in \mathcal{A}$, la matrice $P^{-1}AP$ est diagonale.

Soit
$$(a_0,...,a_{n-1})\in\mathbb{R}^n.$$
 On note $Q\in\mathbb{R}[X]$ le polynôme $\sum_{k=0}^{n-1}a_kX^k.$

Q 22. Quelles sont les valeurs propres complexes de la matrice $J(a_0,...,a_{n-1})$?

III Sous-algèbres strictes de $\mathcal{M}_n(\mathbb{R})$ de dimension maximale

On se propose de montrer dans cette partie que la dimension maximale d'une sous-algèbre stricte de $\mathcal{M}_n(\mathbb{R})$ est égale à n^2-n+1 .

Dans toute cette partie, \mathcal{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ strictement incluse dans $\mathcal{M}_n(\mathbb{R})$ et on note d sa dimension. On a donc $d < n^2$.

III.A – Un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$

La trace de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée $\mathrm{tr}(M)$.

Q 23. Montrer que l'application définie sur $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ par $(A,B) \mapsto \langle A \mid B \rangle = \operatorname{tr}(A^\top B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

On désigne \mathcal{A}^{\perp} l'orthogonal de \mathcal{A} dans $\mathcal{M}_n(\mathbb{R})$ et on note r sa dimension.

Q 24. Quelle relation a-t-on entre d et r?

Jusqu'à la fin de cette partie III, on fixe une base $(A_1,...,A_r)$ de $\mathcal{A}^{\perp}.$

Q 25. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M appartient à \mathcal{A} si et seulement si, pour tout $i \in [1, r]$, $\langle A_i \mid M \rangle = 0$.

Q 26. Montrer que pour toute matrice $N \in \mathcal{A}$ et tout $i \in [1, r]$, on a $N^{\top} A_i \in \mathcal{A}^{\perp}$.

III.B - Conclusion

Soit $\mathcal{A}^{\top} = \{ M^{\top} \mid M \in \mathcal{A} \}.$

Q 27. Montrer que \mathcal{A}^{\top} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ de même dimension que $\mathcal{A}.$

On note $\mathcal{M}_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices colonnes à n lignes et à coefficients réels. On rappelle qu'à toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est associé canoniquement l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ défini par $X \mapsto MX$.

Q 28. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et soit $F = \mathrm{Vect}(A_1X,...,A_rX)$. Montrer que F est stable par les endomorphismes de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associés aux éléments de \mathcal{A}^{\top} .

Q 29. Montrer que $d \leq n^2 - n + 1$ et conclure.

IV Réduction d'une algèbre nilpotente de $\mathcal{M}_n(\mathbb{C})$

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \ge 1$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ constituée d'endomorphismes nilpotents. On admet dans cette partie le théorème ci-dessous, qui sera démontré dans la partie V.

— Théorème de Burnside — Soit E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$. Si les seuls sous-espaces vectoriels de E stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E, alors $\mathcal{A} = \mathcal{L}(E)$.

On se propose de démontrer par récurrence forte sur $n \in \mathbb{N}^*$ que si tous les éléments de \mathcal{A} sont nilpotents, alors \mathcal{A} est trigonalisable.

Q 30. Montrer que le résultat est vrai si n = 1.

On suppose désormais que $n \ge 2$ et que le résultat est vrai pour tout entier naturel $d \le n-1$.

Q 31. Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et $\{0\}$ stable par tous les éléments de A.

On fixe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s = n - r.

Q 32. Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $u \in \mathcal{A}$,

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{cc} A(u) & B(u) \\ 0 & D(u) \end{array} \right)$$

où $A(u) \in \mathcal{M}_r(\mathbb{C}), \ B(u) \in \mathcal{M}_{r,s}(\mathbb{C}) \ \text{et} \ D(u) \in \mathcal{M}_s(\mathbb{C}).$

- **Q 33.** Montrer que $\{A(u) \mid u \in \mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_r(\mathbb{C})$ constituée de matrices nilpotentes et que $\{D(u) \mid u \in \mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_s(\mathbb{C})$ constituée de matrices nilpotentes.
- **Q 34.** Montrer que \mathcal{A} est trigonalisable.
- **Q 35.** Montrer qu'il existe une base de E dans laquelle les matrices des éléments de \mathcal{A} appartiennent à $\mathrm{T}_n^+(\mathbb{C})$.

V Le théorème de Burnside

On se propose de démontrer dans cette partie le théorème de Burnside énoncé dans la partie IV.

On fixe un \mathbb{C} -espace vectoriel E de dimension $n \geq 2$.

On dira qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est irréductible si les seuls sous-espaces vectoriels stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E.

Soit \mathcal{A} une sous-algèbre irréductible de $\mathcal{L}(E)$. Il s'agit donc de montrer que $\mathcal{A} = \mathcal{L}(E)$.

- V.A Recherche d'un élément de rang 1
- **Q 36.** Soient x et y deux éléments de E, x étant non nul. Montrer qu'il existe $u \in \mathcal{A}$ tel que u(x) = y. On pourra considérer dans E le sous-espace vectoriel $\{u(x) \mid u \in \mathcal{A}\}$.
- **Q 37.** Soit $v \in \mathcal{A}$ de rang supérieur ou égal à 2. Montrer qu'il existe $u \in \mathcal{A}$ et $\lambda \in \mathbb{C}$ tel que

$$0 < \operatorname{rg}(v \circ u \circ v - \lambda v) < \operatorname{rg} v.$$

Considérer x et y dans E tels que la famille (v(x),v(y)) soit libre, justifier l'existence de $u\in\mathcal{A}$ tel que $u\circ v(x)=y$ et considérer l'endomorphisme induit par $v\circ u$ sur $\mathrm{Im}\,v$.

- **Q 38.** En déduire l'existence d'un élément de rang 1 dans \mathcal{A} .
- V.B Conclusion

Soit $u_0 \in \mathcal{A}$ de rang 1. On peut donc choisir une base $\mathcal{B} = (\varepsilon_1, ..., \varepsilon_n)$ de E telle que $(\varepsilon_2, ..., \varepsilon_n)$ soit une base de ker u_0 .

- **Q 39.** Montrer qu'il existe $u_1, ..., u_n \in \mathcal{A}$ de rang 1 tels que $u_i(\varepsilon_1) = \varepsilon_i$ pour tout $i \in [1, n]$.
- Q 40. Conclure.

 $\bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \text{FIN} \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm}$

