

Mathématiques 2

2016

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Notations

Pour tout réel x, on note $\lfloor x \rfloor$ sa partie entière.

On note

$$\forall n \in \mathbb{N}^\star \qquad \qquad A_n = \left\{ \sum_{j=1}^n x_j 2^{n-j}, \ (x_j)_{j \in \llbracket 1, n \rrbracket} \in \{0, 1\}^n \right\}$$

$$\forall n \in \mathbb{N}^\star \qquad \qquad D_n = \left\{ \sum_{j=1}^n \frac{x_j}{2^j}, \ (x_j)_{j \in \llbracket 1, n \rrbracket} \in \{0, 1\}^n \right\} \qquad \text{et} \qquad D = \bigcup_{n \in \mathbb{N}^\star} D_n$$

$$\forall n \in \mathbb{N} \qquad \qquad \pi_n(x) = \frac{\lfloor 2^n x \rfloor}{2^n}$$

$$\forall (x, n) \in \mathbb{R} \times \mathbb{N} \qquad d_{n+1}(x) = 2^{n+1} (\pi_{n+1}(x) - \pi_n(x))$$

Soit Z une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs complexes et telle que $Z(\Omega)$ soit fini. En notant $\mathfrak{R}(Z)$ et $\mathfrak{I}(Z)$ les parties réelle et imaginaire de Z, on définit l'espérance de Z par

$$\mathbb{E}(Z) = \mathbb{E}(\mathfrak{R}(Z)) + \mathrm{i}\,\mathbb{E}(\mathfrak{I}(Z)).$$

Si $Z_1,...,Z_n$ sont des variables aléatoires sur $(\Omega,\mathcal{A},\mathbb{P})$, à valeurs complexes, mutuellement indépendantes, et telles que $Z_j(\Omega)$ soit fini pour tout j, on admet que

$$\mathbb{E}\left(\prod_{j=1}^n Z_j\right) = \prod_{j=1}^n \mathbb{E}(Z_j).$$

I Fonction caractéristique

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(\varepsilon_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes à valeurs dans $\{-1,1\}$ avec $\mathbb{P}(\varepsilon_n=1)=\mathbb{P}(\varepsilon_n=-1)=1/2$ pour tout $n\geqslant 1$. On pose

$$\forall n \in \mathbb{N}^*, \qquad X_n = \sum_{k=1}^n \frac{\varepsilon_k}{2^k}.$$

Pour X variable aléatoire réelle avec $X(\Omega)$ fini, on note

$$\forall t \in \mathbb{R}, \qquad \Phi_X(t) = \mathbb{E}\left(e^{itX}\right).$$

On définit également

$$\forall t \in \mathbb{R}, \quad \operatorname{sinc} t = \begin{cases} \frac{\sin t}{t} & \text{si } t \neq 0 \\ 1 & \text{sinon} \end{cases}$$

Soit n un entier naturel non nul et t un réel.

Q 1. Montrer

$$\Phi_{X_n}(t) = \prod_{k=1}^n \cos\left(\frac{t}{2^k}\right).$$

Q 2. En déduire

$$\sin\left(\frac{t}{2^n}\right)\Phi_{X_n}(t) = \frac{\sin(t)}{2^n}.$$

- **Q 3.** Déterminer la limite simple de la suite de fonctions $\left(\Phi_{X_n}\right)_{n\geq 1}$.
- **Q 4.** Étudier la continuité de $\lim_{n\to+\infty} \Phi_{X_n}$.
- **Q 5.** Montrer que X_n et $-X_n$ ont même loi pour tout $n \in \mathbb{N}^*$.
- ${\bf Q}$ 6. En déduire la limite simple de la suite de fonctions $(\varphi_n)_{n\geqslant 1}$ définies par

$$\forall n \in \mathbb{N}^{\star}, \qquad \varphi_n: \left| \begin{matrix} \mathbb{R} \to \mathbb{R} \\ t \mapsto \mathbb{E}(\cos(tX_n)) \end{matrix} \right.$$

 ${\bf Q}$ 7. La suite de fonctions $(\varphi_n)_{n\geqslant 1}$ converge-t-elle uniformément sur $\mathbb R$?

II Écriture binaire

Soit n un entier naturel non nul. On pose

$$\Phi_n: \left| \begin{matrix} \{0,1\}^n \to \llbracket 0,2^n-1 \rrbracket \\ (x_j)_{j \in \llbracket 1,n \rrbracket} \mapsto \sum_{j=1}^n x_j 2^{n-j} \end{matrix} \right|$$

- **Q 8.** Montrer que Φ_n est bien définie en vérifiant $\operatorname{Im} \Phi_n \subset [0, 2^n 1]$.
- **Q 9.** Préciser $\operatorname{Im} \Phi_n$ en fonction de A_n .
- Q 10. Montrer par récurrence

$$\forall k \in [\![0,2^n-1]\!], \qquad k \in \operatorname{Im} \Phi_n.$$

- **Q 11.** En déduire que Φ_n est bijective.
- **Q 12.** Établir la monotonie au sens de l'inclusion de la suite $(D_n)_{n\geq 1}$ puis vérifier $D\subset [0,1[$.
- Q 13. Établir

$$\forall (x,n) \in \mathbb{R} \times \mathbb{N}, \qquad \pi_n(x) \leqslant x < \pi_n(x) + \frac{1}{2^n}.$$

Q 14. Justifier

$$\forall x \in [0, 1[, \forall k \in \mathbb{N}, \qquad \pi_k(x) = \sum_{j=1}^k \frac{d_j(x)}{2^j}.$$

Q 15. Établir

$$\forall (x, j) \in \mathbb{R} \times \mathbb{N}^*, \qquad d_i(x) \in \{0, 1\}.$$

- $\mathbf{Q} \ \mathbf{16.} \quad \text{ Soit } n \in \mathbb{N}^{\star}. \ \text{Justifier } x \in D_n \iff 2^n x \in [\![0, 2^n 1]\!].$
- **Q 17.** Soit $n \in \mathbb{N}^*$. Montrer que l'application

$$\Psi_n: \left| \begin{array}{c} \{0,1\}^n \to D_n \\ (x_j)_{j \in [\![1,n]\!]} \mapsto \sum_{j=1}^n \frac{x_j}{2^j} \end{array} \right|$$

est bijective.

Q 18. Soient $n \in \mathbb{N}^{\star}$ et $x = \sum_{i=1}^{n} \frac{x_j}{2^j}$ avec $(x_j)_{j \in [\![1,n]\!]} \in \{0,1\}^n$. Montrer

$$\forall k \in \mathbb{N}, \qquad \pi_k(x) = \sum_{j=1}^{\min(n,k)} \frac{x_j}{2^j}.$$

III Développement dyadique, loi et décomposition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $(U_n)_{n\geqslant 1}$ une suite de variables aléatoires mutuellement indépendantes suivant une loi de Bernoulli de paramètre 1/2. On pose

$$\begin{split} \forall n \in \mathbb{N}^{\star}, & Y_n = \sum_{k=1}^n \frac{U_k}{2^k} \\ \forall x \in \mathbb{R}, & F_n(x) = \mathbb{P}(Y_n \leqslant x) & G_n(x) = \mathbb{P}(Y_n < x) \end{split}$$

Q 19. Justifier

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}(Y_n \in [0, 1]) = 1.$$

Q 20. Montrer

$$\forall n \in \mathbb{N}^*, \ \forall x \in D_n, \qquad F_n(x) = x + \frac{1}{2^n}.$$

Q 21. Montrer

$$\forall n \in \mathbb{N}^*, \ \forall x \in D_n, \qquad G_n(x) = x.$$

Q 22. Établir, pour tout entier naturel non nul n, que Y_n suit une loi uniforme sur D_n .

Q 23. Réciproquement, soit n un entier naturel non nul et soit X_n une variable aléatoire qui suit une loi uniforme sur D_n . Montrer qu'il existe des variables aléatoires $V_1, ..., V_n$ mutuellement indépendantes, suivant chacune une loi de Bernoulli de paramètre 1/2, et telles que

$$X_n = \sum_{k=1}^n \frac{V_k}{2^k}.$$

IV Développement dyadique, étude asymptotique

On conserve les notations introduites dans la partie III.

Q 24. Soit x réel. Établir la monotonie des suites $(F_n(x))_{n\geq 1}$ et $(G_n(x))_{n\geq 1}$.

Q 25. En déduire la convergence simple des suites de fonctions $(F_n)_{n\geqslant 1}$ et $(G_n)_{n\geqslant 1}$.

Q 26. Montrer

$$\forall x \in D \cup \{1\}, \qquad \lim_{n \to \infty} F_n(x) = x \qquad \text{et} \qquad \lim_{n \to \infty} G_n(x) = x.$$

Q 27. Généraliser les résultats obtenus à la question précédente pour tout $x \in [0,1]$.

Q 28. Montrer que pour tout intervalle non vide $I \subset [0,1]$, on a

$$\lim_{n\to\infty}\mathbb{P}(Y_n\in I)=\ell(I)\qquad\text{avec}\qquad \ell(I)=\sup I-\inf I.$$

Q 29. En déduire que, pour toute fonction f continue de [0,1] dans \mathbb{R} , la suite $(\mathbb{E}(f(Y_n)))_{n\geqslant 1}$ converge et préciser sa limite.

Q 30. À l'aide du résultat précédent, proposer une autre démonstration du résultat obtenu à la question 6.

Q 31. Une application. Justifier l'existence de $\int_{0}^{1} \frac{t-1}{\ln t} dt$ puis déterminer sa valeur.

On pourra considérer
$$\int\limits_0^1 \mathbb{E}\left(t^{Y_n}
ight) \,\mathrm{d}t.$$

V Dénombrabilité

 \mathbf{Q} 32. L'ensemble D est-il dénombrable?

Q 33. On suppose qu'il existe $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ bijective. En considérant $A = \{x \in \mathbb{N} \mid x \notin f(x)\}$, établir une contradiction.

Q 34. Montrer que l'application $\Phi: \begin{vmatrix} \mathcal{P}(\mathbb{N}) \to \{0,1\}^{\mathbb{N}} \\ A \mapsto \mathbb{1}_A \end{vmatrix}$ est bijective.

Q 35. Montrer que l'application

$$\Psi: \left| \begin{array}{c} \{0,1\}^{\mathbb{N}} \rightarrow [0,1] \\ (x_n) \mapsto \displaystyle\sum_{n=0}^{+\infty} \frac{x_n}{2^{n+1}} \end{array} \right|$$

est bien définie et surjective. Est-elle injective ?

On note $D^* = D \setminus \{0\}$. On pose pour tout $(x_n) \in \{0,1\}^{\mathbb{N}}$

$$\Lambda((x_n)) = \begin{cases} \frac{\Psi((x_n))}{\Psi((x_n))} & \text{si } \Psi((x_n)) \in [0,1[\, \smallsetminus \, D^\star \\ \frac{\Psi((x_n))}{2} & \text{si } \Psi((x_n)) \in D \cup \{1\} \text{ et } (x_n) \text{ stationnaire à } 1 \\ \frac{1 + \Psi((x_n))}{2} & \text{si } \Psi((x_n)) \in D^\star \text{ et } (x_n) \text{ stationnaire à } 0 \end{cases}$$

Q 36. Montrer que Λ réalise une bijection de $\{0,1\}^{\mathbb{N}}$ sur [0,1[.

 \mathbf{Q} 37. Conclure que [0,1] n'est pas dénombrable.

 \bullet \bullet FIN \bullet \bullet