

ÉPREUVE SPÉCIFIQUE - FILIÈRE PSI

·----

MATHÉMATIQUES

Lundi 29 avril : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de deux problèmes indépendants.

PROBLÈME 1

Objectifs

Dans la **partie I**, on considère deux exemples de fonctions indéfiniment dérivables sur \mathbf{R} et on s'interroge sur l'existence d'un développement en série entière dans un voisinage de 0 pour ces fonctions. Dans la **partie II**, indépendante de la **partie I**, on démontre le théorème de Borel en construisant, pour toute suite réelle $(b_p)_{p\in \mathbf{N}}$, une fonction f indéfiniment dérivable sur \mathbf{R} telle que pour tout $p\in \mathbf{N}$, $f^{(p)}(0)=b_p$.

Partie I - Deux exemples de fonctions indéfiniment dérivables

On considère la fonction f définie sur \mathbf{R} par :

$$\forall x \in \mathbf{R}, f(x) = \int_0^{+\infty} e^{-t(1-itx)} dt.$$

Q1. Montrer que la fonction f est bien définie sur \mathbf{R} .

Pour tout $p \in \mathbb{N}$, on note $\Gamma_p = \int_0^{+\infty} t^p e^{-t} dt$.

- **Q2.** Pour tout $p \in \mathbb{N}$, justifier l'existence de Γ_p et déterminer une relation entre Γ_{p+1} et Γ_p .
- **Q3.** En déduire, pour tout $p \in \mathbb{N}$, la valeur de Γ_p .
- **Q4.** Montrer que f est indéfiniment dérivable sur \mathbf{R} et déterminer, pour tout $x \in \mathbf{R}$ et tout $p \in \mathbf{N}$, $f^{(p)}(x)$.
- **Q5.** En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{f^{(p)}(0)}{p!} x^p$.

La fonction f est-elle développable en série entière au voisinage de 0?

On considère la fonction g définie sur **R** par :

$$\forall x \in \mathbf{R}, g(x) = \sum_{k=0}^{+\infty} e^{-k(1-ikx)}.$$

- **Q6.** Montrer que g est indéfiniment dérivable sur \mathbf{R} et déterminer, pour tout $x \in \mathbf{R}$ et tout $p \in \mathbf{N}$, $g^{(p)}(x)$.
- **Q7.** Montrer que pour tout $p \in \mathbb{N}$, $|g^{(p)}(0)| \ge p^{2p}e^{-p}$.
- **Q8.** En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{g^{(p)}(0)}{p!} x^p$.

La fonction g est-elle développable en série entière au voisinage de 0?

Partie II - Le théorème de Borel

Q9. Déterminer deux nombres complexes a et b tels que pour tout $x \in \mathbf{R}$:

$$\frac{1}{1+x^2} = \frac{a}{x-i} + \frac{b}{x+i}.$$

Q10. On considère la fonction ψ définie sur **R** par : $\forall x \in \mathbf{R}, \psi(x) = \frac{1}{x-i}$. Montrer par récurrence que pour tout $p \in \mathbf{N}$ et tout $x \in \mathbf{R}$:

$$\psi^{(p)}(x) = \frac{(-1)^p p!}{(x-i)^{p+1}}.$$

Q11. Déterminer, pour tout $p \in \mathbb{N}$, la dérivée p-ième de la fonction φ_1 définie sur \mathbb{R} par :

$$\forall x \in \mathbf{R}, \varphi_1(x) = \frac{1}{1 + x^2}.$$

Q12. Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}$, $\left| (x+i)^{p+1} - (x-i)^{p+1} \right| \le 2(1+x^2)^{\frac{p+1}{2}}$. En déduire que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$, on a :

$$\left|\varphi_1^{(p)}(x)\right| \le \frac{p!}{|x|^{p+1}}.$$

Q13. Pour tout réel α , notons φ_{α} la fonction définie sur **R** par :

$$\forall x \in \mathbf{R}, \varphi_{\alpha}(x) = \frac{1}{1 + \alpha^2 x^2}.$$

Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$:

$$|\alpha| \cdot \left| \varphi_{\alpha}^{(p)}(x) \right| \le \frac{p!}{|x|^{p+1}}.$$

On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ et on lui associe la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ définie sur **R** par :

$$\forall x \in \mathbf{R}, u_n(x) = \frac{a_n x^n}{1 + n! a_n^2 x^2}.$$

Q14. Pour tout $n \in \mathbb{N}$, on note $\alpha_n = \sqrt{n!}a_n$. Montrer que pour tout entier $p \ge 0$, tout entier $n \ge p$ et tout réel x, on a :

$$u_n^{(p)}(x) = a_n \sum_{k=0}^{p} \binom{p}{k} \frac{n!}{(n-k)!} x^{n-k} \varphi_{\alpha_n}^{(p-k)}(x).$$

- **Q15.** En déduire que pour tout entier $n \ge 0$ et tout entier $p \in [0, n-1]$, $u_n^{(p)}(0) = 0$ et déterminer $u_n^{(n)}(0)$.
- **Q16.** Montrer que pour tout entier $n \in \mathbb{N}^*$, tout entier $p \in [0, n-1]$ et tout réel x, on a :

$$\left| u_n^{(p)}(x) \right| \le \frac{|x|^{n-p-1}}{\sqrt{n!}} p! 2^n.$$

- **Q17.** En déduire que la fonction $U = \sum_{n=0}^{+\infty} u_n$ est bien définie et indéfiniment dérivable sur **R**.
- **Q18.** Montrer que $U(0) = a_0$ et pour tout entier $p \ge 1$, $U^{(p)}(0) = \sum_{n=0}^{p-1} u_n^{(p)}(0) + p! a_p$.
- **Q19.** Déduire de ce qui précède que pour toute suite réelle $(b_p)_{p\in\mathbb{N}}$, il existe une fonction f indéfiniment dérivable sur \mathbb{R} telle que pour tout $p\in\mathbb{N}$, $f^{(p)}(0)=b_p$. Ce résultat est appelé théorème de Borel. Il a été démontré par Peano et Borel à la fin du

PROBLÈME 2

Notations et définitions

- Soient $n \in \mathbb{N}^*$ et $(p, q) \in (\mathbb{N}^*)^2$.
- $\mathbf{R}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbf{R} . Si $P \in \mathbf{R}[X]$, on notera encore P la fonction polynomiale associée.
- $\mathbf{M}_p(\mathbf{R})$ et $\mathbf{M}_p(\mathbf{C})$ désignent respectivement les ensembles des matrices carrées de taille p à coefficients dans \mathbf{R} et dans \mathbf{C} . $\mathbf{M}_{p,q}(\mathbf{R})$ et $\mathbf{M}_{p,q}(\mathbf{C})$ désignent respectivement les ensembles des matrices à p lignes et q colonnes à coefficients dans \mathbf{R} et dans \mathbf{C} .
- On note I_p la matrice identité de $\mathbf{M}_p(\mathbf{C})$ et 0_p la matrice de $\mathbf{M}_p(\mathbf{C})$ ne comportant que des 0.
- On note χ_A le polynôme caractéristique d'une matrice $A \in \mathbf{M}_p(\mathbf{C})$, c'est-à-dire le polynôme $\det(XI_p A)$.
- Étant donnée une matrice $M \in \mathbf{M}_p(\mathbf{C})$, on note $\mathrm{Sp}(M)$ l'ensemble des valeurs propres complexes de M.

Objectifs

Dans la **partie I**, on détermine les valeurs propres d'une matrice tridiagonale symétrique réelle particulière. On utilise les résultats démontrés dans la **partie I** pour résoudre, dans la **partie II**, un système différentiel.

Partie I - Éléments propres d'une matrice

I.1 - Localisation des valeurs propres

On considère une matrice $A = (a_{i,j})_{1 \le i,j \le n} \in \mathbf{M}_n(\mathbf{C})$. Soient une valeur propre $\lambda \in \mathbf{C}$ de A et un vecteur

propre associé
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbf{M}_{n,1}(\mathbf{C}) \setminus \{0_{\mathbf{M}_{n,1}(\mathbf{C})}\}.$$

Q20. Montrer que pour tout $i \in [1, n]$, on a : $\lambda x_i = \sum_{j=1}^n a_{i,j} x_j$.

Q21. Soit $i_0 \in [1, n]$ tel que $|x_{i_0}| = \max_{j \in [1, n]} |x_j|$. Montrer que : $|\lambda| \le \sum_{j=1}^n |a_{i_0, j}|$.

En déduire que :

$$|\lambda| \le \max_{i \in \llbracket 1, n \rrbracket} \left\{ \sum_{j=1}^n |a_{i,j}| \right\}.$$

Soient α et β deux nombres réels. On considère la matrice $A_n(\alpha, \beta) \in \mathbf{M}_n(\mathbf{R})$ définie par :

$$A_n(\alpha,\beta) = \begin{pmatrix} \alpha & \beta & 0 & \cdots & 0 \\ \beta & \alpha & \beta & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \beta & \alpha & \beta \\ 0 & \cdots & 0 & \beta & \alpha \end{pmatrix}.$$

- **Q22.** Justifier que les valeurs propres de $A_n(\alpha, \beta)$ sont réelles.
- **Q23.** Soit $\lambda \in \mathbf{R}$ une valeur propre de $A_n(\alpha, \beta)$. Montrer que :

$$|\lambda| \le |\alpha| + 2|\beta|$$
.

I.2 - Calcul des valeurs propres de $A_n(\alpha, \beta)$

Q24. En utilisant la question **Q23**, montrer que pour toute valeur propre λ de $A_n(0, 1)$, il existe $\theta \in [0, \pi]$ tel que $\lambda = 2\cos\theta$.

On note U_n le polynôme $\chi_{A_n(0, 1)}(2X)$.

- **Q25.** Établir, pour $n \ge 3$, une relation entre $\chi_{A_n(0,1)}$, $\chi_{A_{n-1}(0,1)}$ et $\chi_{A_{n-2}(0,1)}$. En déduire, pour $n \ge 3$, une relation entre U_n , U_{n-1} et U_{n-2} .
- **Q26.** Montrer par récurrence sur *n* que pour tout $\theta \in]0, \pi[$:

$$U_n(\cos\theta) = \frac{\sin((n+1)\theta)}{\sin(\theta)}.$$

Q27. Déduire de la question précédente que l'ensemble des valeurs propres de $A_n(0,1)$ est $\left\{2\cos\left(\frac{j\pi}{n+1}\right); j\in [\![1,n]\!]\right\}$. Déterminer la multiplicité des valeurs propres et la dimension des espaces propres associés.

Considérons $j \in [1, n]$ et posons $\theta_j = \frac{j\pi}{n+1}$.

Q28. Montrer que pour tout vecteur propre $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbf{M}_{n,1}(\mathbf{R})$ de $A_n(0,1)$ associé à la valeur propre

 $2\cos(\theta_i)$, on a:

$$\begin{cases}
-2\cos(\theta_j)x_1 + x_2 = 0 \\
x_{k-1} - 2\cos(\theta_j)x_k + x_{k+1} = 0, \quad \forall k \in [2, n-1]. \\
x_{n-1} - 2\cos(\theta_j)x_n = 0
\end{cases}$$

Soit E l'ensemble des suites réelles $(u_k)_{k \in \mathbb{N}}$ vérifiant la relation de récurrence :

$$\forall k \in \mathbf{N}^*, \ u_{k-1} - 2\cos(\theta_j) \ u_k + u_{k+1} = 0.$$

- **Q29.** Montrer que E est un espace vectoriel sur \mathbf{R} dont on précisera la dimension.
- **Q30.** Déterminer l'ensemble *E* des suites $(u_k)_{k \in \mathbb{N}} \in E$ telles que $u_0 = u_{n+1} = 0$.
- **Q31.** En déduire l'espace propre de $A_n(0, 1)$ associé à la valeur propre $2\cos(\theta_i)$.
- **Q32.** En déduire, pour tout $(\alpha, \beta) \in \mathbb{R}^2$, l'ensemble des valeurs propres de $A_n(\alpha, \beta)$ et les espaces propres associés. On distinguera le cas $\beta \neq 0$ du cas $\beta = 0$.

Partie II - Système différentiel

II.1 - Matrices par blocs

On considère A, B, C et D des matrices de $\mathbf{M}_n(\mathbf{C})$ telles que C et D commutent.

Q33. Calculer
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0_n \\ -C & I_n \end{pmatrix}$$
.

L'objectif des trois prochaines questions est de démontrer la relation :

$$\det\begin{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \end{pmatrix} = \det(AD - BC). \tag{1}$$

- **Q34.** Montrer l'égalité (1) dans le cas où D est inversible.
- **Q35.** On ne suppose plus D inversible. Montrer qu'il existe $p_0 \in \mathbb{N}^*$ tel que pour tout entier $p \ge p_0$, $D + \frac{1}{n}I_n$ est inversible.
- **Q36.** En déduire que l'égalité (1) est également vraie dans le cas où D n'est pas inversible.

Considérons une matrice $M \in \mathbf{M}_n(\mathbf{C})$ et formons la matrice :

$$N = \begin{pmatrix} 0_n & I_n \\ M & 0_n \end{pmatrix}.$$

- **Q37.** Montrer que $\operatorname{Sp}(N) = \{ \mu \in \mathbb{C} ; \mu^2 \in \operatorname{Sp}(M) \}.$
- **Q38.** Soient $\mu \in \operatorname{Sp}(N)$ et $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbf{M}_{n,1}(\mathbf{C})$ un vecteur propre de M associé à la valeur propre μ^2 .

 Montrer que le vecteur $\begin{pmatrix} x \\ \mu x \end{pmatrix} \in \mathbf{M}_{2n,1}(\mathbf{C})$ est vecteur propre de N associé à la valeur propre μ .
- **Q39.** Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et inversible.

II.2 - Application à un système différentiel dans le cas où n = 2

On considère le système différentiel :

$$\begin{cases} x_1'' = -2x_1 + x_2 \\ x_2'' = x_1 - 2x_2 \end{cases}$$
 (2)

Q40. Déterminer $(\alpha, \beta) \in \mathbb{R}^2$ tel que le système (2) soit équivalent au système différentiel du premier

ordre
$$X' = BX$$
, où $X = \begin{pmatrix} x_1 \\ x_2 \\ x'_1 \\ x'_2 \end{pmatrix}$ et $B = \begin{pmatrix} 0_2 & I_2 \\ A_2(\alpha, \beta) & 0_2 \end{pmatrix} \in \mathbf{M}_4(\mathbf{R})$.

Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de ce système?

Q41. En utilisant la question **Q37**, déterminer les valeurs propres de *B* et en déduire que *B* est diagonalisable.

On considère la matrice :

$$D = \begin{pmatrix} -i\sqrt{3} & 0 & 0 & 0\\ 0 & i\sqrt{3} & 0 & 0\\ 0 & 0 & -i & 0\\ 0 & 0 & 0 & i \end{pmatrix}.$$

- **Q42.** En utilisant la question **Q38**, déterminer une matrice inversible $P \in \mathbf{M}_4(\mathbf{C})$ dont la première ligne ne comporte que des 1 et telle que $B = PDP^{-1}$.
- **Q43.** Déterminer l'ensemble des solutions du système différentiel Y' = DY, avec $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$.
- **Q44.** Déterminer la solution du système différentiel (2) avec conditions intiales $(x_1(0), x_2(0), x_1'(0), x_2'(0)) = (1, 0, 0, 0)$.

FIN