SESSION 2019 PCMA002

ÉPREUVE SPÉCIFIQUE - FILIÈRE PC

MATHÉMATIQUES

Lundi 29 avril : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé de trois exercices indépendants.

EXERCICE 1

Polynôme de Laguerre et méthode de quadrature de Gauss

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$.

Partie I - Produit scalaire sur $\mathbb{R}_n[X]$

I.1 - Généralités

Pour tout couple $(P, Q) \in \mathbb{R}_n[X]^2$, on note :

$$(P \mid Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt.$$

- **Q1.** Justifier que l'intégrale définissant $(P \mid Q)$ est convergente.
- **Q2.** Montrer que l'application $(\cdot \mid \cdot) : \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$ est un produit scalaire.

I.2 - Calcul d'un produit scalaire

Q3. Soit $k \in [1, n]$. À l'aide d'une intégration par parties, établir que :

$$\int_0^{+\infty} t^k e^{-t} dt = k \int_0^{+\infty} t^{k-1} e^{-t} dt.$$

Q4. Conclure que $(X^k \mid 1) = k!$ pour tout entier $k \in [0, n]$.

Partie II - Construction d'une base orthogonale

On considère l'application α définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad \alpha(P) = XP'' + (1 - X)P'.$$

II.1 - Propriétés de l'application α

- **Q5.** Montrer que α est un endomorphisme de $\mathbb{R}_n[X]$.
- **Q6.** Écrire la matrice de α dans la base $(1, X, \dots, X^n)$.
- **Q7.** En déduire que α est diagonalisable et que $Sp(\alpha) = \{-k \mid k \in [0, n]\}$.

II.2 - Vecteurs propres de l'application α

On fixe un entier $k \in [0, n]$.

Q8. Quelle est la dimension de $\ker(\alpha + k \operatorname{Id}_{\mathbb{R}_n[X]})$?

Q9. En déduire qu'il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$, de coefficient dominant égal à 1, vérifiant $\alpha(P_k) = -kP_k$.

Q10. Justifier que P_k est de degré k.

Q11. Déterminer P_0 et P_1 . Vérifier que $P_2 = X^2 - 4X + 2$.

II.3 - Orthogonalité de la famille (P_0, \ldots, P_n)

On fixe un couple $(P, Q) \in \mathbb{R}_n[X]^2$.

Q12. Montrer que $(\alpha(P) \mid Q) = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t}dt$.

Q13. En déduire que $(\alpha(P) \mid Q) = (P \mid \alpha(Q))$.

Q14. Montrer que (P_0, \ldots, P_n) est une base orthogonale de $\mathbb{R}_n[X]$. On pourra utiliser **Q9** et **Q13**.

Partie III - Méthode de quadrature de Gauss

On admet que le polynôme P_n admet n racines réelles **distinctes** que l'on note x_1, \ldots, x_n .

On souhaite montrer qu'il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que :

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \int_0^{+\infty} P(t)e^{-t}dt = \sum_{i=1}^n \lambda_i P(x_i). \quad (*)$$

Q15. Montrer qu'un *n*-uplet $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ vérifie (*) si et seulement si

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} 0! \\ 1! \\ \vdots \\ (n-1)! \end{pmatrix}.$$

Q16. En déduire qu'il existe un unique *n*-uplet $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ vérifiant (*).

Q17. Déterminer un polynôme $P \in \mathbb{R}_{2n}[X]$ tel que

$$\int_0^{+\infty} P(t)e^{-t}dt \neq \sum_{i=1}^n \lambda_i P(x_i).$$

EXERCICE 2

Étude d'une équation différentielle

On considère l'équation différentielle suivante :

$$x^{2}(1-x)y'' - x(1+x)y' + y = 2x^{3}.$$
 (E)

Partie I - Solution particulière de l'équation homogène

Dans cette première partie, on souhaite déterminer les solutions développables en série entière de l'équation différentielle homogène associée à (E):

$$x^{2}(1-x)y'' - x(1+x)y' + y = 0. (H)$$

On fixe une suite de nombres réels $(a_n)_{n\in\mathbb{N}}$ telle que la série entière $\sum a_n x^n$ ait un rayon de convergence r > 0. On définit la fonction $f:]-r, r[\to \mathbb{R}$ par :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- **Q18.** Justifier que la fonction f est de classe \mathscr{C}^2 et que les fonctions f' et f'' sont développables en série entière. Exprimer avec la suite $(a_n)_{n\in\mathbb{N}}$ les développements en série entière respectifs des fonctions f' et f'' en précisant leur rayon de convergence.
- **Q19.** Montrer qu'il existe une suite $(b_n)_{n\geq 2}$ de nombres réels non nuls telle que pour tout $x\in]-r,r[$, on a :

$$x^{2}(1-x)f''(x) - x(1+x)f'(x) + f(x) = a_{0} + \sum_{n=2}^{+\infty} b_{n}(a_{n} - a_{n-1})x^{n}.$$

- **Q20.** Montrer que f est solution de (H) sur l'intervalle]-r, r[si et seulement si $a_0 = 0$ et $a_{n+1} = a_n$ pour tout $n \in \mathbb{N}^*$.
- **Q21.** En déduire que si f est solution de (H) sur]-r,r[, alors $r \ge 1$ et il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall x \in]-1, 1[, \quad f(x) = \frac{\lambda x}{1-x}.$$

Q22. Réciproquement, montrer que si $\lambda \in \mathbb{R}$, alors la fonction

$$g:]-1,1[\to\mathbb{R},\quad x\mapsto \frac{\lambda x}{(1-x)}$$

est une solution de (H) sur]-1,1[développable en série entière.

Partie II - Solutions de (E) sur]0,1[ou $]1,+\infty[$

On désigne par I l'un des intervalles]0,1[ou $]1,+\infty[$. Soit $y:I\to\mathbb{R}$ une fonction de classe \mathscr{C}^2 . On définit la fonction $z:I\to\mathbb{R}$ par la relation :

$$\forall x \in I, \quad z(x) = \left(\frac{1}{x} - 1\right) y(x).$$

- **Q23.** Justifier que z est de classe \mathscr{C}^2 sur l'intervalle I, puis exprimer z' et z'' avec y, y' et y''.
- **Q24.** Montrer que y est solution de (E) sur I si et seulement si z est solution sur I de l'équation différentielle :

$$xz'' + z' = 2x. \qquad (E_1)$$

Q25. Montrer que si z est solution de (E_1) sur I, alors il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall x \in I, \quad z'(x) = \frac{\lambda}{x} + x.$$

Q26. En déduire l'ensemble des solutions de l'équation différentielle (*E*) sur *I*.

Partie III - Solutions de (E) sur $]0, +\infty[$

Q27. Déterminer l'ensemble des solutions de l'équation différentielle (E) sur $]0, +\infty[$.

EXERCICE 3

Étude d'une marche aléatoire

On considère trois points distincts du plan nommés A, B et C. Nous allons étudier le déplacement aléatoire d'un pion se déplaçant sur ces trois points.

À l'étape n = 0, on suppose que le pion se trouve sur le point A. Ensuite, le mouvement aléatoire du pion respecte les deux règles suivantes :

- 1. le mouvement du pion de l'étape *n* à l'étape *n* + 1 ne dépend que de la position du pion à l'étape *n*, plus précisément il ne dépend pas des positions occupées aux autres étapes précédentes;
- 2. pour passer de l'étape n à l'étape n + 1, on suppose que le pion a une chance sur deux de rester sur place, sinon il se déplace de manière équiprobable vers l'un des deux autres points.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement "le pion se trouve en A à l'étape n", B_n l'évènement "le pion se trouve en B à l'étape n" et C_n l'évènement "le pion se trouve en C à l'étape n". On note également :

$$\forall n \in \mathbb{N}, \quad p_n = P(A_n), \quad q_n = P(B_n), \quad r_n = P(C_n) \quad \text{et} \quad V_n = \begin{pmatrix} p_n \\ q_n \\ r_n \end{pmatrix},$$

et on considère la matrice :

$$M = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Dans l'exercice, on pourra utiliser sans le démontrer le résultat suivant :

$$\forall n \in \mathbb{N}, \quad M^n = \frac{1}{3 \cdot 4^n} \begin{pmatrix} 4^n + 2 & 4^n - 1 & 4^n - 1 \\ 4^n - 1 & 4^n + 2 & 4^n - 1 \\ 4^n - 1 & 4^n - 1 & 4^n + 2 \end{pmatrix}.$$

On rappelle que si E et F sont deux évènements avec P(F) > 0, on définit la probabilité conditionnelle de E sachant F (notée $P(E \mid F)$ ou $P_F(E)$) par :

$$P(E \mid F) = P_F(E) = \frac{P(E \cap F)}{P(F)}.$$

Partie I - Calcul des probabilités

- **Q28.** Calculer les nombres p_n , q_n et r_n pour n = 0 et n = 1.
- **Q29.** Démontrer que pour tout $n \in \mathbb{N}$, on a la relation $V_{n+1} = MV_n$.
- **Q30.** En déduire que $V_n = M^n V_0$, puis une expression de p_n , q_n et r_n pour tout $n \in \mathbb{N}$.
- **Q31.** Déterminer les limites respectives des suites $(p_n)_{n\in\mathbb{N}}$, $(q_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$. Interpréter le résultat.

Partie II - Nombre moyen de passages en A

Pour $n \in \mathbb{N}^*$, on note a_n le nombre moyen de passages du pion en A entre l'étape 1 et l'étape n et on définit la variable aléatoire :

$$X_n = \begin{cases} 1 & \text{si } A_n \text{ est réalisé,} \\ 0 & \text{si } \overline{A}_n \text{ est réalisé.} \end{cases}$$

- **Q32.** Interpréter la variable aléatoire $X_1 + \cdots + X_n$ et le nombre $E(X_1 + \cdots + X_n)$.
- **Q33.** Calculer l'espérance de la variable aléatoire X_n pour $n \in \mathbb{N}^*$.
- **Q34.** En déduire une expression de a_n .

Partie III - Temps d'attente avant le premier passage en B

On définit la variable aléatoire T_B de la façon suivante :

- 1. si le pion ne passe jamais en B, on pose $T_B = 0$;
- 2. sinon, T_B est le numéro de l'étape à laquelle le pion passe pour la première fois en B.

Nous allons déterminer la loi de T_B et son espérance.

- **Q35.** Calculer $P(T_B = 1)$ et $P(T_B = 2)$.
- **Q36.** Soit $n \in \mathbb{N}$. Exprimer \overline{B}_n en fonction de A_n et C_n .
- **Q37.** Établir que $P(B_3 \cap \overline{B}_2 \cap \overline{B}_1) = \frac{1}{4}P(\overline{B}_2 \cap \overline{B}_1)$, puis en déduire que $P(B_3 \mid \overline{B}_2 \cap \overline{B}_1) = \frac{1}{4}$.

Dans la suite, on admet la relation :

$$\forall n \in \mathbb{N}^*, \quad P\left(B_{n+1} \mid \bigcap_{k=1}^n \overline{B}_k\right) = \frac{1}{4}.$$

- **Q38.** Pour $k \in \mathbb{N}^*$, calculer $P(T_B = k)$. Que vaut $P(T_B = 0)$?
- **Q39.** Justifier que la variable aléatoire T_B admet une espérance. Quelle est l'espérance de T_B ?

FIN