A2018 - MATH I MP

ÉCOLE DES PONTS PARISTECH, ISAE-SUPAERO, ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH, MINES SAINT-ÉTIENNE, MINES NANCY, IMT Atlantique, ENSAE PARISTECH.

Concours Centrale-Supélec (Cycle International), Concours Mines-Télécom, Concours Commun TPE/EIVP.

CONCOURS 2018

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice et de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES I - MP

L'énoncé de cette épreuve comporte 5 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le but de ce problème est d'étudier quelques applications probabilistes du lemme de sous-additivité de Fekete et du théorème de Erdös-Szekeres.

Dans tout le problème, (Ω, \mathcal{A}, P) désigne un espace probabilisé. On note P(A) la probabilité d'un événement A et on note E(X) l'espérance (si elle existe) d'une variable aléatoire réelle discrète X définie sur (Ω, \mathcal{A}, P) .

A. Préliminaires

Les deux questions de cette partie sont indépendantes.

Soit *n* un entier naturel non nul.

1) Montrer que pour toute variable aléatoire X réelle à valeurs dans $\{1, ..., n\}$ et pour tout $m \in \{1, ..., n\}$,

$$E(X) \le m - 1 + n P(X \ge m)$$
.

2) À l'aide d'une comparaison entre une somme et une intégrale, montrer que

$$n\ln(n) - n + 1 \le \sum_{k=1}^{n} \ln(k).$$

En déduire l'inégalité

$$\left(\frac{n}{e}\right)^n \le n!$$

B. Le lemme de sous-additivité de Fekete

Soit $u = (u_n)_{n \in \mathbb{N}^*}$ une suite réelle bornée. Pour tout $n \in \mathbb{N}^*$, on note $U_n = \{u_k; k \ge n\}$. On définit les suites $\underline{u} = (\underline{u}_n)_{n \in \mathbb{N}^*}$ et $\overline{u} = (\overline{u}_n)_{n \in \mathbb{N}^*}$ par les formules

$$\underline{u}_n = \inf(U_n)$$
 et $\overline{u}_n = \sup(U_n)$.

3) Justifier que \underline{u} et \overline{u} sont bien définies. Montrer qu'elles sont monotones puis qu'elles convergent.

Pour toutes suites réelles $v = (v_n)_{n \in \mathbb{N}^*}$ et $w = (w_n)_{n \in \mathbb{N}^*}$, on dit que v est *plus petite* que w, et on note $v \le w$, si pour tout $n \in \mathbb{N}^*$, on a $v_n \le w_n$. De façon équivalente, on dit aussi que w est *plus grande* que v.

4) Montrer que \overline{u} est la plus petite suite (au sens de \leq) qui est décroissante et plus grande que u. Montrer de même que \underline{u} est la plus grande suite (au sens de \leq) qui est croissante et plus petite que u.

Dans toute la suite du problème, on appelle limite inférieure \varliminf et limite supérieure \varlimsup les limites suivantes :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \underline{u}_n \quad \text{et} \quad \overline{\lim}_{n \to +\infty} u_n = \lim_{n \to +\infty} \overline{u}_n$$

- 5) Si $v = (v_n)_{n \in \mathbb{N}^*}$ est une autre suite réelle bornée plus grande que u, comparer les limites de \overline{u} et de \overline{v} .
- 6) Montrer que \overline{u} et \underline{u} sont adjacentes si et seulement si u converge. En ce cas, que peut-on dire des limites des trois suites u, \overline{u} et \underline{u} ?

On dit qu'une suite réelle $u = (u_n)_{n \in \mathbb{N}^*}$ est *sous-additive* si pour tous i, j dans \mathbb{N}^* , on a $u_{i+j} \le u_i + u_j$.

Dans le reste de cette partie on ne suppose plus que la suite u est bornée, mais on suppose que u est positive et sous-additive.

7) Soit m et n deux entiers naturels non nuls tels que $m \ge 2n$. On note q le quotient et r le reste de la division euclidienne de m par n. Montrer que

$$u_m \le (q-1)u_n + u_{n+r}$$

et en déduire l'inégalité

$$\frac{u_m}{m} \leq \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m}.$$

8) En déduire que la suite $\left(\frac{u_m}{m}\right)_{m\in\mathbb{N}^*}$ est bornée, puis que pour tout $n\in\mathbb{N}^*$,

$$\overline{\lim}_{m\to+\infty}\frac{u_m}{m}\leq \frac{u_n}{n}.$$

9) En conclure que la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ converge.

C. Une application probabiliste

Soit x un nombre réel et $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles mutuellement indépendantes et de même loi. Pour tout $n\in\mathbb{N}^*$ on note Y_n la variable aléatoire réelle définie par

$$Y_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

- **10)** Montrer que si $P(X_1 < x) = 1$, alors pour tout $n \in \mathbb{N}^*$, $P(Y_n < x) = 1$ et que si $P(X_1 \ge x) > 0$, alors pour tout $n \in \mathbb{N}^*$, $P(Y_n \ge x) > 0$.
- **11)** Soit *m* et *n* deux entiers naturels non nuls. Montrer l'inclusion d'événements suivante :

$$\left(\left\{Y_{m} \geqslant x\right\} \cap \left\{\frac{1}{n} \sum_{k=m+1}^{m+n} X_{k} \geqslant x\right\}\right) \subset \left\{Y_{m+n} \geqslant x\right\}$$

et en déduire l'inégalité

$$P(Y_{m+n} \ge x) \ge P(Y_m \ge x)P(Y_n \ge x).$$

12) Démontrer la convergence de la suite

$$\left(\left(P(Y_n \ge x) \right)^{\frac{1}{n}} \right)_{n \in \mathbb{N}^*}$$

D. Le théorème de Erdös-Szekeres

Si r est un entier naturel non nul, on note $\ell = (\ell_1, \ldots, \ell_r)$ une liste de nombres réels de longueur r; cette liste est croissante si $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_r$, décroissante si $\ell_1 \geq \ell_2 \geq \cdots \geq \ell_r$. Une liste ℓ' de longueur $p \in \{1, \ldots, r\}$ est extraite de ℓ' s'il existe extraite indices strictement croissants extraite indices strictement croissants extraite indices extraite indices strictement croissants extraite indices extraite indices

Soit p et q deux entiers naturels non nuls et $a = (a_1, a_2, ..., a_{pq+1})$ une liste de longueur pq + 1 de nombres réels deux-à-deux distincts qui représentent les valeurs de pq + 1 jetons numérotés 1, 2, ..., pq + 1.

On range successivement les jetons en piles de gauche à droite par le procédé suivant :

- le jeton n°1 de valeur a_1 débute la première pile;
- $si\ a_2 > a_1$, alors on pose le jeton n°2 de valeur a_2 sur le jeton n°1; sinon on crée une nouvelle pile avec ce jeton n°2, située à droite de la première pile;
- lors des étapes suivantes, disposant du jeton n°k de valeur ak, on le dépose sur la première pile en partant de la gauche telle que ak est supérieur à la valeur du jeton au sommet de la pile, si une telle pile existe; sinon on crée une nouvelle pile avec ce jeton, située à droite des précédentes.

En suivant ce procédé avec tous les jetons, on obtient plusieurs piles de jetons, chaque pile ayant des valeurs rangées dans l'ordre croissant du bas vers le haut.

Par exemple, avec la liste

$$a = (1, 4, 2, 3, 7, 6, 5, 9, 10, 8)$$

dans cet ordre, on obtient de gauche à droite les trois piles suivantes :

- 13) À l'aide d'un raisonnement par récurrence sur le nombre s de piles, montrer qu'à l'issue du processus, pour tout jeton de valeur z de la dernière pile, il existe une liste $b = (b_1, ..., b_s)$ de réels extraite de la liste a vérifiant :
 - *b* est décroissante et de longueur *s* ;
 - pour tout $i \in \{1,...,s\}$ le jeton n° i de valeur b_i est dans la i-ème pile en partant de la gauche;
 - $b_s = z$.

Par exemple, avec la liste a = (1, 4, 2, 3, 7, 6, 5, 9, 10, 8) on a une liste extraite b = (7, 6, 5).

14) En déduire que la liste a admet au moins une liste extraite croissante de longueur p + 1 ou une liste extraite décroissante de longueur q + 1.

E. Comportement asymptotique d'une suite aléatoire

Soit n un entier naturel supérieur ou égal à 2. On note S_n l'ensemble des permutations de $\{1,2,\ldots,n\}$. Chaque élément $\sigma \in S_n$ est noté par la liste de ses n images $(\sigma(1),\sigma(2),\ldots,\sigma(n))$.

Soit B une variable aléatoire à valeurs dans S_n de loi uniforme, c'est-à-dire que pour tout $\sigma \in S_n$, on a $P(B = \sigma) = 1/\text{Card}(S_n)$. On définit la variable aléatoire A à valeurs dans S_n en posant, pour tout $\omega \in \Omega$,

$$A(\omega) = (B(\omega)(1), \dots, B(\omega)(n)).$$

On note également, pour tout $k \in \{1, ..., n\}$, $A_k(\omega) = B(\omega)(k)$. Enfin, on considère les variables aléatoires réelles C_n et D_n définies par :

- C_n est la longueur de la plus longue liste croissante extraite de A;
- D_n est la longueur de la plus longue liste décroissante extraite de A.
- **15)** Les variables aléatoires réelles $A_1, A_2, ..., A_n$ sont-elles mutuellement indépendantes?

- **16)** Soit $k \in \{1, ..., n\}$ et $s = (s_1, ..., s_k)$ une liste croissante de longueur k d'éléments de $\{1, ..., n\}$. On note A^s l'événement : « la liste $(A_{s_1}, ..., A_{s_k})$ est croissante ». Montrer que $P(A^s) = \frac{1}{k!}$.
- 17) Démontrer que C_n et D_n ont la même loi. Démontrer alors, à l'aide du résultat de la question 14, que :

$$\mathrm{E}(C_n) \geq \frac{\sqrt{n}}{2}.$$

18) Démontrer que pour tout $k \in \{1, ..., n\}$,

$$P(C_n \ge k) \le \frac{\binom{n}{k}}{k!}.$$

19) Soit n un entier naturel non nul et α un réel strictement supérieur à 1. Justifier qu'il existe un entier naturel non nul k tel que $k-1 < \alpha e \sqrt{n} \le k$. À l'aide du résultat de la question 2, déduire de la question précédente que

$$P(C_n \geq \alpha e \sqrt{n}) \leq \left(\frac{1}{\alpha}\right)^{2\alpha e \sqrt{n}}.$$

20) En déduire qu'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}^*}$ tendant vers 0 telle que, pour tout $n\in\mathbb{N}^*$,

$$\frac{\mathrm{E}(C_n)}{\sqrt{n}} \leq \left(1 + n^{-1/4}\right)e + \varepsilon_n.$$

En conclure que $\varlimsup_{n\to +\infty} \frac{\mathrm{E}(C_n)}{\sqrt{n}}$ existe et que $\varlimsup_{n\to +\infty} \frac{\mathrm{E}(C_n)}{\sqrt{n}} \leqslant e$.

FIN DU PROBLÈME