

Mathématiques 1

PSI C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Autour des matrices de Toeplitz

Dans tout le problème, \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , n un entier naturel supérieur ou égal à 2, \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. Si a et b sont deux entiers relatifs tels que $a \leq b$, $[\![a,b]\!]$ désigne l'ensemble $\{a,a+1,...,b-1,b\}$. $\mathbb{K}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbb{K} . L'ensemble des matrices carrées de taille n à coefficients dans \mathbb{K} est noté $\mathcal{M}_n(\mathbb{K})$.

Si
$$(t_{-n+1},...,t_0,...,t_{n-1})\in\mathbb{K}^{2n-1},$$
 on note $T(t_{-n+1},...,t_0,...,t_{n-2},t_{n-1})$ la matrice

$$T(t_{-n+1},...,t_0,...,t_{n-2},t_{n-1}) = \begin{pmatrix} t_0 & t_1 & t_2 & \cdots & \cdots & t_{n-1} \\ t_{-1} & t_0 & t_1 & \ddots & & \vdots \\ t_{-2} & t_{-1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & t_1 & t_2 \\ \vdots & & \ddots & t_{-1} & t_0 & t_1 \\ t_{-n+1} & \cdots & \cdots & t_{-2} & t_{-1} & t_0 \end{pmatrix}$$

Une telle matrice est appelée matrice de Toeplitz d'ordre n. On nomme $Toep_n(\mathbb{K})$ l'ensemble des matrices de Toeplitz d'ordre n à coefficients dans \mathbb{K} :

$$\mathrm{Toep}_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) \mid \exists (t_{-n+1},...,t_0,...,t_{n-1}) \in \mathbb{K}^{2n-1}, \ M = T(t_{-n+1},...,t_0,...,t_{n-2},t_{n-1}) \}$$

Une matrice N de $\mathcal{M}_n(\mathbb{K})$ est dite nilpotente s'il existe $p \in \mathbb{N}^*$ tel que $N^p = 0$. On admettra qu'une telle matrice vérifie $N^n = 0$.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{K})$, on note χ_M son polynôme caractéristique défini par $\chi_M(X) = \det(XI_n - M)$. Si $P = a_0 + a_1X + \dots + a_nX^p$ $(p \in \mathbb{N})$ est un polynôme de $\mathbb{K}[X]$, P(M) désigne la matrice

$$P(M) = a_0 I_n + a_1 M + \dots + a_p M^p$$

Le but de ce problème est l'étude de certaines propriétés des matrices de Toeplitz. La partie I traite de généralités sur les matrices de Toeplitz et de quelques exemples. La partie II, indépendante de la partie I, étudie un type particulier de matrices de Toeplitz — les matrices circulantes — en s'intéressant à leur structure et à leur diagonalisabilité. Enfin, la partie III, indépendante des précédentes, aborde l'étude des matrices cycliques et les relie aux matrices de Toeplitz.

I Généralités et quelques exemples

I.A - Généralités

Q 1. Montrer que $\operatorname{Toep}_n(\mathbb{C})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$. En donner une base et en préciser la dimension.

Q 2. Montrer que si deux matrices A et B commutent (AB = BA) et si P et Q sont deux polynômes de $\mathbb{C}[X]$, alors P(A) et Q(B) commutent.

I.B - Cas de la dimension 2

Soit $A = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$ une matrice de Toeplitz de taille 2×2 , où (a,b,c) sont des complexes.

 \mathbf{Q} 3. Donner le polynôme caractéristique de A.

Q 4. Discuter, en fonction des valeurs de (a, b, c), de la diagonalisabilité de A.

Réduction d'une matrice sous forme de Toeplitz

Q 5. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de $\mathcal{M}_2(\mathbb{C})$. Montrer que M est semblable à une matrice de type $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ ou de type $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$, où α , β et γ sont des complexes avec $\alpha \neq \beta$.

Q 6. En déduire que toute matrice de $\mathcal{M}_2(\mathbb{C})$ est semblable à une matrice de Toeplitz.

I.C - Un autre cas particulier: les matrices tridiagonales

Une matrice tridiagonale est une matrice de Toeplitz de la forme $T(0,...,0,t_{-1},t_0,t_1,0,...,0)$, i.e. une matrice de la forme

$$A_n(a,b,c) = \left(\begin{array}{cccc} a & b & & (0) \\ c & a & \ddots & \\ & \ddots & \ddots & b \\ (0) & & c & a \end{array} \right)$$

où (a, b, c) sont des complexes.

On fixe (a,b,c) trois nombres complexes tels que $bc \neq 0$. On se propose de chercher les éléments propres de $A_n(a,b,c)$.

Soit $\lambda \in \mathbb{C}$ une valeur propre de $A_n(a,b,c)$ et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n$ un vecteur propre associé.

Q 7. Montrer que si l'on pose $x_0=0$ et $x_{n+1}=0$, alors $(x_1,...,x_n)$ sont les termes de rang variant de 1 à n d'une suite $(x_k)_{k\in\mathbb{N}}$ vérifiant $x_0=0,\,x_{n+1}=0$ et

$$\forall k \in \mathbb{N}, \quad bx_{k+2} + (a - \lambda)x_{k+1} + cx_k = 0$$

Q 8. Rappeler l'expression du terme général de la suite $(x_k)_{k\in\mathbb{N}}$ en fonction des solutions de l'équation

$$bx^2 + (a - \lambda)x + c = 0 \tag{I.1}$$

- **Q 9.** À l'aide des conditions imposées à x_0 et x_{n+1} , montrer que (I.1) admet deux solutions distinctes r_1 et r_2 .
- **Q 10.** Montrer que r_1 et r_2 sont non nuls et que r_1/r_2 appartient à \mathbb{U}_{n+1} .
- **Q 11.** En utilisant l'équation (I.1) satisfaite par r_1 et r_2 , déterminer r_1r_2 et r_1+r_2 . En déduire qu'il existe un entier $\ell \in [\![1,n]\!]$ et un nombre complexe ρ vérifiant $\rho^2=bc$ tels que

$$\lambda = a + 2\rho \cos\left(\frac{\ell\pi}{n+1}\right)$$

- **Q 12.** En déduire qu'il existe $\alpha \in \mathbb{C}$ tel que, pour tout k dans [0, n+1], $x_k = 2i\alpha \frac{\rho^k}{b^k} \sin\left(\frac{\ell k\pi}{n+1}\right)$.
- **Q 13.** Conclure que $A_n(a,b,c)$ est diagonalisable et donner ses valeurs propres.

II Matrices circulantes

Une matrice circulante est une matrice de Toeplitz $T(t_{-n+1},...,t_0,...,t_{n-2},t_{n-1})$, pour laquelle

$$\forall k \in [1, n-1], \quad t_k = t_{-n+k}$$

Elle est donc de la forme

2018-02-01 11:51:08

$$T(t_1,t_2,...,t_0,t_1,...,t_{n-2},t_{n-1}) = \begin{pmatrix} t_0 & t_1 & \cdots & t_{n-2} & t_{n-1} \\ t_{n-1} & t_0 & \ddots & & t_{n-2} \\ t_{n-2} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & t_1 \\ t_1 & \cdots & t_{n-2} & t_{n-1} & t_0 \end{pmatrix}$$

On pose
$$M_n=\begin{pmatrix} 0&1&0&\cdots&0\\0&0&\ddots&\ddots&\vdots\\ \vdots&&\ddots&\ddots&0\\0&&&\ddots&1\\1&0&\cdots&\cdots&0 \end{pmatrix}$$
 et $\omega_n=\mathrm{e}^{2i\pi/n}.$

- **Q 14.** Calculer $M_n^2, ..., M_n^n$. Montrer que M_n est inversible et donner un polynôme annulateur de M_n .
- **Q 15.** Justifier que M_n est diagonalisable. Préciser ses valeurs propres (exprimées à l'aide de ω_n) et donner une base de vecteurs propres de M_n .
- **Q 16.** On pose $\Phi_n = (\omega_n^{(p-1)(q-1)})_{1 \leqslant p,q \leqslant n} \in \mathcal{M}_n(\mathbb{C})$. Justifier que Φ_n est inversible et donner sans calcul la valeur de la matrice $\Phi_n^{-1} M_n \Phi_n$.
- **Q 17.** Soit A une matrice circulante. Donner un polynôme $P \in \mathbb{C}[X]$ tel que $A = P(M_n)$.
- **Q 18.** Réciproquement, si $P \in \mathbb{C}[X]$, montrer, à l'aide d'une division euclidienne de P par un polynôme bien choisi, que $P(M_n)$ est une matrice circulante.

Q 19. Montrer que l'ensemble des matrices circulantes est un sous-espace vectoriel de $\operatorname{Toep}_n(\mathbb{C})$, stable par produit et par transposition.

Q 20. Montrer que toute matrice circulante est diagonalisable. Préciser ses valeurs propres et une base de vecteurs propres.

III Étude des matrices cycliques

III.A - Endomorphismes et matrices cycliques

Pour toute matrice M de $\mathcal{M}_n(\mathbb{C})$, on note f_M l'endomorphisme de \mathbb{C}^n canoniquement associé à M.

 ${\bf Q}$ 21. Montrer que si M est dans $\mathcal{M}_n(\mathbb{C}),$ alors les propositions suivantes sont équivalentes :

- i. il existe x_0 dans \mathbb{C}^n tel que $\left(x_0,f_M(x_0),...,f_M^{n-1}(x_0)\right)$ est une base de \mathbb{C}^n ;
- ii. M est semblable à la matrice $C(a_0,...,a_{n-1})$ définie par

$$C(a_0,...,a_{n-1}) = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$$

où $(a_0,...,a_{n-1})$ sont des nombres complexes.

On dit alors que f_M est un endomorphisme cyclique, que M est une matrice cyclique et que x_0 est un vecteur cyclique de f_M .

III.A.1) Soit M dans $\mathcal{M}_n(\mathbb{C})$. On suppose que f_M est diagonalisable. On note $(\lambda_1,...,\lambda_n)$ ses valeurs propres (non nécessairement distinctes) et $(e_1,...,e_n)$ une base de vecteurs associée à ces valeurs propres. Soit $u = \sum_{i=1}^n u_i e_i$ un vecteur de \mathbb{C}^n où $(u_1,...,u_n)$ sont n nombres complexes.

Q 22. Donner une condition nécessaire et suffisante portant sur $(u_1,...,u_n,\lambda_1,...,\lambda_n)$ pour que $(u,f_M(u),...,f_M^{n-1}(u))$ soit une base de \mathbb{C}^n .

Q 23. En déduire une condition nécessaire et suffisante pour qu'un endomorphisme diagonalisable soit cyclique. Caractériser alors ses vecteurs cycliques.

III.A.2) Soit $(a_0,...,a_{n-1}) \in \mathbb{C}^n$. On s'intéresse aux éléments propres de la matrice $C(a_0,...,a_{n-1})$.

Q 24. Soit λ un nombre complexe. En discutant dans \mathbb{C}^n du système $C(a_0,...,a_{n-1})X=\lambda X$, montrer que λ est une valeur propre de $C(a_0,...,a_{n-1})$ si et seulement si λ est racine d'un polynôme de $\mathbb{C}[X]$ à préciser.

Q 25. Si λ est racine de ce polynôme, déterminer le sous-espace propre de $C(a_0,...,a_{n-1})$ associé à la valeur propre λ et préciser sa dimension.

Q 26. En déduire une condition nécessaire et suffisante pour qu'une matrice cyclique soit diagonalisable.

III.A.3) Commutant d'un endomorphisme cyclique

Soient M une matrice cyclique et x_0 un vecteur cyclique de f_M . On cherche à montrer que l'ensemble

$$\mathcal{C}(f_M) = \{g \in \mathcal{L}(\mathbb{C}^n) \mid f_M \circ g = g \circ f_M\}$$

est l'ensemble des polynômes en f_M .

Q 27. Soit $P \in \mathbb{C}[X]$. Montrer que $P(f_M) \in \mathcal{C}(f_M)$.

 $\mathbf{Q} \ \ \mathbf{28.} \qquad \text{Soit } g \in \mathcal{C}(f_M). \ \ \text{Montrer qu'il existe} \ (\alpha_0,...,\alpha_{n-1}) \in \mathbb{C}^n \ \ \text{tels que} \ g = \alpha_0 Id_{\mathbb{C}^n} + \alpha_1 f_M + \cdots + \alpha_{n-1} f_M^{n-1}.$ On pourra utiliser la base $(x_0,f_M(x_0),...,f_M^{n-1}(x_0))$ et exprimer $g(x_0)$ dans cette base.

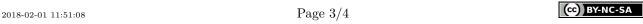
Q 29. Conclure

III.A.4) Soit
$$N = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$
.

 \mathbf{Q} 30. Donner les valeurs propres de N et les sous-espaces propres associés. Est-elle diagonalisable?

 \mathbf{Q} 31. La matrice N est-elle cyclique?

 \mathbf{Q} 32. Montrer que l'ensemble des matrices qui commutent avec N est l'ensemble des matrices de Toeplitz triangulaires inférieures.



III.B – Quelques résultats de calcul matriciel dans $\mathcal{M}_n(\mathbb{R})$

Dans toute la suite du problème, les matrices considérées sont à coefficients réels.

Si $A=(a_{ij})_{1\leqslant i,j\leqslant n}$ est une matrice d'ordre n et k est un entier dans [-n+1,n-1], on dit que le coefficient a_{ij} de A est un coefficient diagonal d'ordre k si j-i=k.

On note
$$A^{(k)} = (a^{(k)}_{ij})_{1\leqslant i,j\leqslant n}$$
 la matrice définie par $\forall (i,j)\in [\![1,n]\!]^2,\ a^{(k)}_{i,j}=\left\{egin{array}{l} a_{ij} & \mbox{si } j-i=k\\ 0 & \mbox{sinon} \end{array}\right.$

Tous les coefficients de cette matrice sont nuls sauf ses coefficients diagonaux d'ordre k qui sont égaux aux

$$\text{Ainsi, si } A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \ A^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix}, \ A^{(1)} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}, \ A^{(-1)} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 8 & 0 \end{pmatrix}.$$

On note D_k la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf les coefficients diagonaux d'ordre kqui valent 1. Pour tout entier relatif k, on définit l'espace vectoriel Δ_k par

$$\Delta_k = \{M = (m_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}) \mid \forall (i,j) \in \llbracket 1,n \rrbracket^2, m_{ij} = 0 \text{ si } j-i \neq k \} \qquad \text{si } k \in \llbracket -n+1,n-1 \rrbracket$$

et $\Delta_k = \{0\}$ sinon. Ainsi, Δ_0 est l'ensemble des matrices diagonales, Δ_1 l'ensemble des matrices dont tous les coefficients sont nuls sauf éventuellement les coefficients diagonaux d'ordre 1, Δ_{-1} l'ensemble des matrices dont tous les coefficients sont nuls sauf éventuellement les coefficients diagonaux d'ordre -1.

Pour tout k dans \mathbb{Z} , on note H_k l'espace vectoriel $\bigoplus_{i=k} \Delta_i$.

Q 33. Montrer que si i et j sont dans [-n+1, n-1], si $A \in \Delta_i$ et $B \in \Delta_j$, alors $AB \in \Delta_{i+j}$.

Q 34. En déduire que si $A \in H_i$ et $B \in H_j$, alors $AB \in H_{i+j}$

III.B.1)

Q 35. Soit C une matrice nilpotente. Montrer que $I_n + C$ est inversible et que

$$(I_n+C)^{-1}=I_n-C+C^2+\cdots+(-1)^{n-1}C^{n-1}$$

On suppose que $k\geqslant 0$ et que C est une matrice de Δ_{k+1} . On pose $P=I_n+C$. Q 36. Monter que P est inversible et que $P^{-1}\in \bigoplus_{p=0}^{n-1}\Delta_{p(k+1)}$.

On considère l'endomorphisme φ de $\mathcal{M}_n(\mathbb{R})$ défini par $\forall M \in \mathcal{M}_n(\mathbb{R}), \ \varphi: M \mapsto P^{-1}MP$.

Q 37. Soient $i \in [0, k]$ et $M \in \Delta_i$. Montrer qu'il existe M' dans H_{k+1} tel que $\varphi(M) = M + M'$.

Q 38. La matrice N étant la matrice définie en III.A.4, montrer qu'il existe N' dans H_{k+1} tel que

$$\varphi(N) = N + NC - CN + N'$$

Q 39. Soit T une matrice triangulaire supérieure. On pose A = N + T, $B = \varphi(A)$. Montrer que $B \in H_{-1}$ et que

$$\left\{ \begin{aligned} &\forall i \in \llbracket -1, k-1 \rrbracket, \quad B^{(i)} = A^{(i)} \\ &B^{(k)} = A^{(k)} + NC - CN \end{aligned} \right.$$

III.C - L'opérateur de Sylvester

On définit les opérateurs

$$\mathcal{S}: \left| \begin{array}{l} \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}) \\ X \mapsto NX - XN \end{array} \right. \quad \text{et} \quad \quad \mathcal{S}^*: \left| \begin{array}{l} \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}) \\ X \mapsto {}^t NX - X^t N \end{array} \right.$$

Q 40. Montrer que le noyau de S est l'ensemble des matrices de Toeplitz réelles triangulaires inférieures. On admet que le noyau de S^* est l'ensemble des matrices de Toeplitz réelles triangulaires supérieures.

Montrer que $\mathcal{S}(\Delta_{k+1}) \subset \Delta_k$ et $\mathcal{S}^*(\Delta_k) \subset \Delta_{k+1}$.

On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire usuel défini par : $\forall (M_1,M_2) \in \mathcal{M}_n(\mathbb{R}), \ \langle M_1,M_2 \rangle = \operatorname{tr}({}^tM_1M_2).$ On note \mathcal{S}_{k+1} la restriction de \mathcal{S} à Δ_{k+1} et \mathcal{S}_k^* la restriction de \mathcal{S}^* à $\Delta_k.$

Q 42. Vérifier que pour tous X dans Δ_{k+1} et Y dans Δ_k , $\langle \mathcal{S}_{k+1} X, Y \rangle = \langle X, \mathcal{S}_k^* Y \rangle$. En déduire que $\ker(\mathcal{S}_k^*)$ et $\operatorname{Im}(\mathcal{S}_{k+1})$ sont supplémentaires orthogonaux dans Δ_k , c'est-à-dire que

$$\Delta_k = \ker(\mathcal{S}_k^*) \oplus^{\perp} \operatorname{Im}(\mathcal{S}_{k+1})$$

Soient T une matrice triangulaire supérieure, A = N + T et $k \ge 0$. Montrer que A est semblable à une Q 43. matrice L dont tous les coefficients diagonaux d'ordre k sont égaux et vérifiant $\forall i \in [-1, k-1], L^{(i)} = A^{(i)}$.

En déduire que toute matrice cyclique est semblable à une matrice de Toeplitz. Q 44.

