SESSION 2018 PSIMA02

ÉPREUVE SPÉCIFIQUE - FILIÈRE PSI

MATHÉMATIQUES

Lundi 30 avril : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de 2 problèmes indépendants.

PROBLÈME 1

Ce problème comporte 3 parties indépendantes.

Notations et définitions

- N désigne l'ensemble des entiers naturels, N* désigne l'ensemble des entiers naturels non nuls.
- R désigne l'ensemble des nombres réels.
- $\mathbf{R}[X]$ désigne le \mathbf{R} -espace vectoriel des polynômes à coefficients réels et, pour tout entier $n \in \mathbf{N}$, on note $\mathbf{R}_n[X]$ le \mathbf{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.
- Si n_1 et n_2 sont deux entiers naturels, on note $[n_1, n_2]$ l'ensemble des entiers naturels compris (au sens large) entre n_1 et n_2 .

Objectifs

On s'intéresse dans ce problème à l'équation différentielle $x^2y'' + axy' + by = 0$. La **partie I** est une partie d'algèbre linéaire qui traite des solutions polynomiales de cette équation lorsque a et b sont des constantes réelles. Dans la **partie II**, on détermine l'ensemble des solutions de l'équation lorsque a et b sont des constantes réelles. La **partie III** traite des solutions de cette équation lorsque a = 1 et b est la fonction carrée.

Partie I - Endomorphismes

Dans toute cette partie, n désigne un entier naturel non nul et a et b des constantes réelles.

Q1. On note Δ l'endomorphisme de $\mathbf{R}[X]$ défini par :

$$\forall P \in \mathbf{R}[X], \ \Delta(P) = XP.'$$

Calculer, pour tout $k \in [0, n], \Delta(X^k)$.

- **Q2.** Montrer que pour tout $P \in \mathbf{R}[X]$, $X^2P'' = \Delta \circ (\Delta \mathrm{Id})(P)$, où Id désigne l'endomorphisme identité sur $\mathbf{R}[X]$.
- **Q3.** Montrer que si $P \in \mathbf{R}_n[X]$, $\Delta(P) \in \mathbf{R}_n[X]$.

On notera Δ_n l'endomorphisme de $\mathbf{R}_n[X]$ induit par Δ .

- **Q4.** Déterminer la matrice de Δ_n dans la base canonique $(1, X, \dots, X^n)$ de $\mathbf{R}_n[X]$.
- **Q5.** On définit l'application Φ par :

$$\forall P \in \mathbf{R}[X], \ \Phi(P) = X^2 P'' + aXP'.$$

Montrer que $\Phi = \Delta^2 + (a-1)\Delta$ et en déduire que Φ définit un endomorphisme de $\mathbf{R}[X]$.

- **Q6.** Montrer que Φ induit un endomorphisme Φ_n de $\mathbf{R}_n[X]$.
- **Q7.** Montrer que Φ_n est diagonalisable.

On considère l'endomorphisme φ de $\mathbf{R}[X]$ défini par :

$$\forall P \in \mathbf{R}[X], \ \varphi(P) = X^2 P'' + aXP' + bP.$$

- **Q8.** Montrer que φ induit un endomorphisme de $\mathbf{R}_n[X]$, endomorphisme que l'on notera φ_n . Exprimer φ_n en fonction de Δ_n .
- **Q9.** Exprimer la matrice de φ_n dans la base canonique de $\mathbf{R}_n[X]$.

On considère l'équation:

$$s^2 + (a-1)s + b = 0. (1)$$

- **Q10.** Expliciter le noyau de φ_n lorsque l'équation (1) admet deux racines entières $m_1, m_2 \in [0, n]$.
- **Q11.** Expliciter le noyau de φ_n lorsque l'équation (1) admet une unique racine entière $m \in [0, n]$.
- **Q12.** Déterminer le noyau de φ . En déduire qu'il est de dimension finie et déterminer sa dimension.

Partie II - Une équation différentielle

On considère dans cette partie l'équation différentielle

$$x^2y'' + axy' + by = 0, (2)$$

où a et b sont des constantes réelles.

- **Q13.** Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de l'équation (2) sur $I =]0, +\infty[$? Et sur $J =]-\infty, 0[$?
- **Q14.** Montrer que si y est une solution de (2) sur I, alors $g = y \circ \exp$ est une solution sur \mathbf{R} de l'équation différentielle linéaire à coefficients constants :

$$u'' + (a-1)u' + bu = 0. (3)$$

- **Q15.** Réciproquement, soit $t \mapsto g(t)$ une solution de (3) sur **R**. Montrer que la fonction $g \circ \ln$ est solution de (2) sur *I*.
- **Q16.** Donner les solutions à valeurs réelles de l'équation (3) dans le cas où a = 3 et b = 1 et dans le cas où a = 1 et b = 4. En déduire, dans chacun des cas, les solutions à valeurs réelles de l'équation (2) sur l'intervalle I.

On suppose dans les deux questions suivantes uniquement que a = 1 et b = -4.

- **Q17.** Montrer que si y est solution de (2) sur J, alors $h = y \circ (-\exp)$ est solution de (3) sur **R**.
- **Q18.** Déduire de ce qui précède l'ensemble des solutions de (2) de classe C^2 sur \mathbf{R} .

Partie III - Une équation de Bessel

On se propose dans cette partie d'étudier l'équation différentielle :

$$x^2y'' + xy' + x^2y = 0. (4)$$

Q19. Rappeler la définition du rayon de convergence d'une série entière.

Série entière dont la somme est solution de (4)

On suppose qu'il existe une série entière $\sum_{k\geq 0} c_k x^k$, avec $c_0 = 1$, de rayon de convergence R > 0 et dont la fonction somme J_0 est solution de (4) sur] - R, R[.

Q20. Montrer que, pour tout $k \in \mathbb{N}$, on a :

$$\begin{cases} c_{2k+1} = 0 \\ c_{2k} = \frac{(-1)^k}{4^k (k!)^2} \end{cases}.$$

- **Q21.** Déterminer le rayon de convergence R de la série entière obtenue : $\sum_{k>0} c_k x^k$.
- **Q22.** Soit r > 0 et soit f une autre solution de (4) sur]0, r[. Montrer que si (J_0, f) est liée dans l'espace vectoriel des fonctions de classe C^2 sur]0, r[, alors f est bornée au voisinage de 0.

Inverse d'une série entière non nulle en 0

Soit $\sum_{k\geq 0} \alpha_k x^k$ une série entière de rayon de convergence $R_\alpha > 0$ telle que $\alpha_0 = 1$. L'objectif de ce paragraphe est de montrer l'existence et l'unicité d'une série entière $\sum_{k\geq 0} \beta_k x^k$ de rayon de convergence $R_\beta > 0$ telle que pour tout x appartenant aux domaines de convergence des deux séries :

$$\left(\sum_{k=0}^{+\infty} \alpha_k x^k\right) \left(\sum_{k=0}^{+\infty} \beta_k x^k\right) = 1.$$

Q23. Montrer que si $\sum_{k\geq 0} \beta_k x^k$ est solution, alors la suite $(\beta_k)_{k\in\mathbb{N}}$ satisfait aux relations suivantes :

$$\begin{cases} \beta_0 &= 1\\ \forall n \in \mathbf{N}^* & \sum_{k=0}^n \alpha_k \beta_{n-k} &= 0 \end{cases}$$
 (5)

Soit *r* un réel tel que $0 < r < R_{\alpha}$.

Q24. Montrer qu'il existe un réel M > 0 tel que pour tout $k \in \mathbb{N}$:

$$|\alpha_k| \leq \frac{M}{r^k} .$$

Q25. Montrer que (5) admet une unique solution $(\beta_k)_{k\in\mathbb{N}}$ et que, pour tout $k\in\mathbb{N}^*$:

$$|\beta_k| \leq \frac{M(M+1)^{k-1}}{r^k} .$$

On pourra raisonner par récurrence.

Q26. Que peut-on dire du rayon de convergence R_{β} de la série entière $\sum_{k>0} \beta_k x^k$?

Ensemble des solutions de (4)

- **Q27.** Soit r > 0 et soit λ une fonction de classe C^2 sur]0, r[. Montrer que la fonction $y: x \mapsto \lambda(x)J_0(x)$ est solution de (4) sur]0, r[si et seulement si la fonction $x \mapsto xJ_0^2(x)\lambda'(x)$ est de dérivée nulle sur]0, r[.
- **Q28.** Montrer que J_0^2 est somme d'une série entière dont on donnera le rayon de convergence. Que vaut $J_0^2(0)$?
- **Q29.** En déduire l'existence d'une fonction η somme d'une série entière de rayon de convergence $R_{\eta} > 0$ telle que

$$x \mapsto \eta(x) + J_0(x) \ln(x)$$

- soit solution de (4) sur un intervalle $]0, R_{\eta}[$.
- **Q30.** En déduire l'ensemble des solutions de (4) sur $]0, R_{\eta}[$.

PROBLÈME 2

Notations et définitions

- N désigne l'ensemble des entiers naturels, R désigne celui des nombres réels.
- Si X est une variable aléatoire admettant une espérance, on note $\mathbf{E}(X)$ son espérance.

Soit $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé. Soit X une variable aléatoire discrète sur $(\Omega, \mathcal{A}, \mathbf{P})$, à valeurs dans [-1, 1]. On considère dans ce problème une suite $(X_i)_{i \in \mathbb{N}^*}$ de variables aléatoires discrètes sur $(\Omega, \mathcal{A}, \mathbf{P})$, mutuellement indépendantes et de même loi que X. Pour tout $n \in \mathbb{N}^*$, on note :

$$S_n = \frac{X_1 + \dots + X_n}{n}.$$

Objectif

Montrer que si la variable aléatoire X est centrée ($\mathbf{E}(X) = 0$), alors la suite (S_n) $_{n \ge 1}$ converge presquesûrement vers la constante 0. Il s'agit d'un cas particulier de la loi forte des grands nombres.

Q31. On ne suppose pas *X* centrée dans cette question. Montrer que *X* admet une espérance.

On suppose désormais que X est centrée.

- Q32. Énoncer et démontrer l'inégalité de Markov pour une variable aléatoire finie Y sur $(\Omega, \mathcal{A}, \mathbf{P})$. Montrer que ce résultat est encore vrai lorsque Y est une variable aléatoire discrète non nécessairement finie.
- **Q33.** En déduire que pour tout $\alpha > 0$:

$$\mathbf{P}(|X| \ge \alpha) \le \frac{\mathbf{E}(|X|)}{\alpha}.$$

Q34. Montrer que pour tout t > 0, pour tout $\varepsilon > 0$ et pour tout $n \in \mathbb{N}^*$, on a :

$$\mathbf{P}(S_n \ge \varepsilon) = \mathbf{P}\left(e^{tnS_n} \ge e^{tn\varepsilon}\right) \le \frac{\left(\mathbf{E}\left(e^{tX}\right)\right)^n}{e^{tn\varepsilon}}.$$

Majoration de $E(e^{tX})$

Q35. Soit a > 1. On considère la fonction g_a définie par :

$$\forall x \in \mathbf{R}, \ g_a(x) = \frac{1-x}{2}a^{-1} + \frac{1+x}{2}a - a^x.$$

Montrer que la fonction g_a est dérivable sur \mathbf{R} et que la fonction g'_a est décroissante sur \mathbf{R} . En déduire, en remarquant que $g_a(-1) = g_a(1) = 0$, que pour tout $x \in [-1, 1]$, $g_a(x) \ge 0$.

Q36. En déduire que pour tout t > 0 et pour tout $x \in [-1, 1]$ on a :

$$e^{tx} \le \frac{1-x}{2}e^{-t} + \frac{1+x}{2}e^{t}.$$

Q37. En déduire que pour tout t > 0:

$$\mathbf{E}\left(e^{tX}\right) \le \mathrm{ch}(t).$$

Q38. Montrer que pour tout entier $k \in \mathbb{N}$ et tout $t \in \mathbb{R}$, on a :

$$\frac{t^{2k}}{(2k)!} \le \frac{1}{k!} \left(\frac{t^2}{2}\right)^k.$$

En déduire que pour tout t > 0, on a :

$$\mathbf{E}\left(e^{tX}\right) \leq e^{\frac{t^2}{2}}.$$

Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

Q39. Montrer que la fonction

$$t \in \mathbf{R} \mapsto e^{-nt\varepsilon + n\frac{t^2}{2}}$$

atteint un minimum en un point que l'on précisera.

Q40. En déduire que $P(S_n \ge \varepsilon) \le e^{-n\frac{\varepsilon^2}{2}}$, puis que :

$$\mathbf{P}(|S_n| \ge \varepsilon) \le 2e^{-n\frac{\varepsilon^2}{2}}.$$

IMPRIMERIE NATIONALE - 18 1062 - D'après documents fournis

Conclusion

- **Q41.** Montrer que pour tout réel $\varepsilon > 0$, la série de terme général $\mathbf{P}(|S_n| > \varepsilon)$ converge.
- **Q42.** On fixe un réel $\varepsilon > 0$. On note, pour tout $n \in \mathbb{N}^*$:

$$B_n = \bigcup_{m>n} \{\omega \in \Omega ; |S_m(\omega)| > \varepsilon \}.$$

Montrer que pour tout $n \in \mathbb{N}^*$, B_n est un événement et que :

$$\mathbf{P}\left(\bigcap_{n\in\mathbf{N}^*}B_n\right)=0.$$

Q43. Posons, pour tout $k \in \mathbb{N}^*$:

$$\Omega_k = \left\{ \omega \in \Omega \; ; \; \exists n \in \mathbb{N}^*, \; \forall m \ge n, \; |S_m(\omega)| \le \frac{1}{k} \right\}.$$

Montrer que pour tout $k \in \mathbb{N}^*$, Ω_k est un événement.

Écrire l'ensemble $A = \left\{ \omega \in \Omega \; ; \; \lim_{n \to +\infty} S_n(\omega) = 0 \right\}$ à l'aide des événements $\Omega_k, k \in \mathbb{N}^*$. En déduire que A est un événement.

Q44. Déduire des questions précédentes que :

$$P(A) = 1.$$

FIN