SESSION 2018 MPMA206

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 2

Jeudi 3 mai : 8 h - 12 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de deux exercices et d'un problème, tous indépendants.

EXERCICE I

On note E l'espace vectoriel des applications continues sur le segment [-1,1] et à valeurs réelles.

Q1. Démontrer que l'on définit un produit scalaire sur E en posant pour f et g éléments de E:

$$(f|g) = \int_{-1}^{1} f(t)g(t)dt.$$

- **Q2.** On note $u:t\mapsto 1$, $v:t\mapsto t$ et $F=\text{vect}\{u,v\}$, déterminer une base orthonormée de F.
- **Q3.** Déterminer le projeté orthogonal de la fonction $w: t \mapsto e^t$ sur le sous-espace F et en déduire la valeur du réel $\inf_{(a,b)\in\mathbb{R}^2} \left[\int_{-1}^1 \left(e^t (a+bt) \right)^2 dt \right]$.

On pourra simplifier les calculs en utilisant le théorème de Pythagore.

EXERCICE II

Dans cet exercice, n est un entier tel que $n \ge 2$.

Q4. Question préliminaire

Soient un réel $0 < \lambda < 1$ et $(X_n)_{n \ge 1}$ une suite de variables aléatoires qui suivent chacune une loi binomiale de paramètres n et $p = \frac{\lambda}{n}$.

Justifier que, pour tout entier $k \ge 1$, $\lim_{n \to +\infty} \left[\frac{n}{n} \frac{n-1}{n} \dots \frac{n-k+1}{n} \right] = 1$ et déterminer $\lim_{n \to +\infty} P(X_n = k)$. On convient alors d'approximer pour $n \ge 50$, $p \le 0,01$ et np < 10 la loi

binomiale de paramètres n et p par la loi de Poisson de paramètre $\lambda = np$.

- Q5. Un examinateur interroge à l'oral du concours CCP n candidats tous nés en 1998. On suppose que les dates de naissances des n candidats sont uniformément réparties sur les 365 jours de l'année 1998. On note X_n la variable aléatoire égale au nombre de candidats qui sont convoqués le jour de leur anniversaire. Déterminer la loi de la variable X_n et donner son espérance.
- **Q6.** Dans le cas où l'examinateur interroge 219 candidats, donner une estimation de la probabilité que deux étudiants soient convoqués le jour de leur anniversaire. Prendre 0,55 comme valeur approchée de $e^{-0.6}$.

PROBLÈME

On note, pour n entier tel que $n \ge 2$, $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On s'intéresse dans ce problème, à travers divers exemples, à la réduction de matrices par blocs du type $\begin{pmatrix} aA & bA \\ cA & dA \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ où $A \in \mathcal{M}_{n}(\mathbb{R})$ et a, b, c, d sont quatre réels non tous nuls.

On rappelle qu'un produit de matrices par blocs se fait de manière similaire à un produit classique :

On pourra utiliser sans démonstration que si $P \in GL_n(\mathbb{R})$, A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$ et si T est un polynôme, $A = P^{-1}BP \Rightarrow T(A) = P^{-1}T(B)P$.

On rappelle que si A, B, C sont des matrices de $\mathcal{M}_n(\mathbb{R})$, $\det\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \cdot \det C$.

Questions préliminaires

L'objectif est de démontrer le résultat suivant : "une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable sur \mathbb{R} si et seulement s'il existe un polynôme P scindé sur \mathbb{R} , à racines simples, vérifiant P(M) = 0". Pour cela on considère une matrice $M \in \mathcal{M}_n(\mathbb{R})$ et on note u l'endomorphisme de \mathbb{R}^n canoniquement associé à M.

- Q7. On suppose que u est diagonalisable et on note $\lambda_1, \lambda_2, ..., \lambda_p$ $(p \ge 1)$ les valeurs propres distinctes de u. Démontrer que le polynôme $P = (X - \lambda_1)(X - \lambda_2)....(X - \lambda_p)$ est annulateur de u.
- **Q8.** Réciproquement, on suppose que $\mu_1, \mu_2, ..., \mu_r$ sont r nombres réels distincts $(r \ge 1)$ tels que $Q = (X - \mu_1)(X - \mu_2)...(X - \mu_r)$ est un polynôme annulateur de u. En utilisant le lemme des noyaux, démontrer que u est diagonalisable sur $\mathbb R$ et que le spectre de u est inclus dans l'ensemble $\{\mu_1, \mu_2, ..., \mu_r\}$.

Un exemple où la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est diagonalisable sur $\mathbb R$

- **Q9.** On suppose que $V = \begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$. Démontrer que V est diagonalisable sur \mathbb{R} et donner une matrice inversible que l'on notera $P = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ et une matrice diagonale D vérifiant : $V = PDP^{-1}$ (on précisera P^{-1}).
- **Q10.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose alors la matrice par blocs $Q = \begin{pmatrix} \alpha I_n & \beta I_n \\ \gamma I_n & \delta I_n \end{pmatrix}$. Justifier que la matrice Q est inversible, donner la matrice Q^{-1} et démontrer que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ est semblable à la matrice $B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.
- Q11. On suppose que la matrice A est diagonalisable sur \mathbb{R} , ce qui signifie qu'il existe une matrice R inversible et une matrice R diagonale telles que $R = R\Delta R^{-1}$. Calculer le produit de matrices par blocs : $\begin{pmatrix} R^{-1} & 0 \\ 0 & R^{-1} \end{pmatrix} B \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}.$ Que peut-on en déduire pour la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} ?$
- Q12. On se propose de démontrer la réciproque du résultat précédent. On suppose que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ est diagonalisable. Soit T un polynôme scindé à racines simples annulateur de cette matrice, calculer T(A). Donner une condition nécessaire et suffisante sur la matrice A pour que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ soit diagonalisable.

Un exemple où la matrice $egin{pmatrix} a & b \\ c & d \end{pmatrix}$ est trigonalisable sur $\mathbb R$

- Q13. Démontrer que la matrice $E = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$ est trigonalisable sur \mathbb{R} et donner une matrice inversible P telle que $E = P \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} P^{-1}$.
- **Q14.** $A \in \mathcal{M}_n(\mathbb{R})$, démontrer que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ est semblable à la matrice $F = \begin{pmatrix} A & -2A \\ 0 & A \end{pmatrix}$.

Q15. On suppose que la matrice F est diagonalisable sur \mathbb{R} . Soit $U \in \mathbb{R}[X]$ un polynôme annulateur de F, scindé sur \mathbb{R} et à racines simples. On note U' le polynôme dérivé de U.

Démontrer que
$$\begin{pmatrix} U(A) & -2AU'(A) \\ 0 & U(A) \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$$
 est la matrice nulle.

- **Q16.** Vérifier que le polynôme minimal de la matrice A est X. En déduire la valeur de la matrice A.
- Q17. Donner une condition nécessaire et suffisante sur la matrice A pour que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ soit diagonalisable.
- **Q18.** On suppose que la matrice F est trigonalisable sur \mathbb{R} . Exprimer le polynôme caractéristique de F en fonction de celui de A. En déduire que F est trigonalisable sur \mathbb{R} si et seulement si A est trigonalisable sur \mathbb{R} .
- Q19. Donner un exemple de matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$ ne soit pas trigonalisable sur \mathbb{R} .

Applications

Q20. Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique (e_1, e_2, e_3, e_4) de

$$\mathbb{R}^4 \text{ est } M = \begin{pmatrix} 1 & 3 & 2 & 6 \\ 2 & 2 & 4 & 4 \\ 2 & 6 & 1 & 3 \\ 4 & 4 & 2 & 2 \end{pmatrix}.$$

Déterminer deux sous-espaces vectoriels de dimension 2 stables par u.

On pourra s'inspirer de la question **Q10**.

Q21. En adaptant la démarche présentée dans le premier exemple de ce problème (page 4),

démontrer que la matrice
$$M = \begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$
 est diagonalisable sur \mathbb{R} . Déterminer une

matrice D diagonale et une matrice P inversible telles que $M = PDP^{-1}$.

Q22. Utiliser la question **Q21** pour donner les solutions du système différentiel de fonctions inconnues x_1, x_2, x_3, x_4 de la variable réelle t:

$$\begin{cases} x_1' = 4x_1 + 2x_3 \\ x_2' = 4x_2 + 2x_4 \\ x_3' = 2x_1 + 4x_3 \\ x_4' = 2x_2 + 4x_4 \end{cases}$$
 (on ne demande pas de détails).

Q23. Sachant que la solution φ sur \mathbb{R} du système différentiel X' = MX vérifiant $\varphi(0) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ est

la fonction $t \mapsto e^{tM} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ où e^{tM} désigne l'exponentielle de la matrice tM, déterminer la matrice e^{M}

FIN

