

Mathématiques 2

PSI C risées

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Objectifs

L'objectif du problème est l'étude de l'évolution de certains systèmes (discrets ou continus) à coefficients périodiques, dans le cadre de la théorie de Floquet. Dans la première partie on démontre quelques propriétés des suites complexes périodiques et des normes matricielles. La théorie de Floquet est introduite dans la partie II à travers l'étude de suites vérifiant une relation de récurrence linéaire d'ordre 2 à coefficients périodiques. Dans la partie III, le résultat est généralisé au cas des suites vectorielles. Une approche du cas continu est proposée dans la partie IV. La partie V est consacrée à la preuve d'un lemme nécessaire à la partie III ; en dehors de cette finalité elle est indépendante des autres parties.

Notations

- $-\mathcal{M}_n(\mathbb{C})$ désigne l'ensemble des matrices carrées d'ordre n à coefficients complexes ;
- $-\mathcal{M}_{n,1}(\mathbb{C})$ l'ensemble des matrices colonnes de taille n à coefficient complexes ; on identifie $\mathcal{M}_{n,1}(\mathbb{C})$ et \mathbb{C}^n .
- $\ \, \mathrm{GL}_n(\mathbb{C})$ représente l'ensemble des éléments inversibles de $\mathcal{M}_n(\mathbb{C}).$
- $-\operatorname{tr}(M)$ est la trace de la matrice M de $\mathcal{M}_n(\mathbb{C})$.
- $\ \mathcal{T}_n(\mathbb{C})$ désigne l'ensemble des matrice triangulaires supérieures d'ordre n.
- $0_{1,n}$ est la matrice ligne de taille n dont tous les coefficients sont nuls.

$$- \text{ Pour tout } Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{C}^n \text{, on pose } \|Y\|_{\infty} = \max_{1 \leqslant i \leqslant n} |y_i|.$$

 $- \ \text{ Pour toute matrice } C = (c_{i,j})_{1\leqslant i,j\leqslant n} \text{ de } \mathcal{M}_n(\mathbb{C}), \text{ on pose } \|C\|_0 = \max_{1\leqslant i,j\leqslant n} |c_{i,j}|.$

On rappelle que $\|\cdot\|_{\infty}$ est une norme sur \mathbb{C}^n et que $\|\cdot\|_0$ est une norme sur $\mathcal{M}_n(\mathbb{C})$.

- Si $A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ sont deux matrices colonnes de taille 2 à coefficients dans \mathbb{C} , on note [A,B] la matrice $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{C})$.

I Préliminaire

I.A — Une suite $(z_k)_{k\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ est dite périodique s'il existe un entier $p\geqslant 1$ tel que, $\forall k\in\mathbb{N},\ z_{k+p}=z_k$; p est alors une période de la suite (z_k) qui est dite p-périodique.

- I.A.1) Vérifier qu'une suite périodique est bornée.
- I.A.2) Que peut-on dire des suites 1-périodiques?
- **I.A.3)** Vérifier que, si (z_k) est p-périodique, alors $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, z_{n+kp} = z_n$.
- I.A.4) Que peut-on dire des suites qui sont à la fois périodiques et convergentes?
- ${\it I.B}$ Vérifier les deux propriétés suivantes.
- **I.B.1)** $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$ $||AB||_0 \leq n||A||_0 \cdot ||B||_0$
- **I.B.2)** $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall Y \in \mathbb{C}^n \quad ||AY||_{\infty} \leqslant n||A||_0 \cdot ||Y||_{\infty}$

II Exemples de suite récurrente linéaire d'ordre 2 à coefficients périodiques

II.A – Dans cette sous-partie II.A, a est un nombre réel non nul. On note Sol(II.1) l'ensemble des suites complexes $(z_k)_{k\in\mathbb{N}}$ vérifiant la relation de récurrence

$$\forall k \in \mathbb{N}^*, \qquad z_{k+1} + az_k + z_{k-1} = 0 \tag{II.1}$$

- II.A.1) Donner la forme générale des suites appartenant à Sol(II.1) en fonction des racines complexes r_1 et r_2 de l'équation $r^2+ar+1=0$. Que valent r_1+r_2 et r_1r_2 ?
- **II.A.2)** Montrer que si |a| > 2, la suite nulle est la seule solution périodique de (II.1).
- II.A.3) Montrer que si a=-2 alors, (II.1) admet une infinité de solutions constantes et une infinité de solutions non bornées.

II.A.4) Montrer que si a = +2 alors, (II.1) admet une infinité de solutions 2-périodiques et une infinité de solutions non bornées.

II.A.5) On suppose dans cette question que p est un entier supérieur ou égal à 3. Donner une valeur de $a \in]-2,2[$ pour laquelle toutes les solutions de l'équation (II.1) sont p-périodiques.

II.B — Dans toute la suite de cette partie, on suppose que p est un entier supérieur ou égal à 2, que $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ sont deux suites de nombres réels p-périodiques et que $\forall k\in\mathbb{N},\ b_k\neq 0$. On note Sol(II.2) l'ensemble des suites complexes $(z_k)_{k\in\mathbb{N}}$ qui vérifient la relation de récurrence

$$\forall k \in \mathbb{N}^*, \qquad b_k z_{k+1} + a_k z_k + b_{k-1} z_{k-1} = 0 \tag{II.2}$$

II.B.1) Justifier que l'application $\Psi: \begin{vmatrix} \operatorname{Sol}(\operatorname{II}.2) & \to & \mathbb{C}^2 \\ (z_k)_{k \in \mathbb{N}} & \mapsto & \begin{pmatrix} z_0 \\ z_1 \end{pmatrix}$ est un isomorphisme de \mathbb{C} -espaces vectoriels.

II.B.2) On se fixe $(y_k)_{k\in\mathbb{N}}$ et $(z_k)_{k\in\mathbb{N}}$, deux suites solutions de (II.2).

On pose pour tout $k \in \mathbb{N},$ $W_k = b_k(y_k z_{k+1} - z_k y_{k+1})$. Montrer que la suite $(W_k)_{k \in \mathbb{N}}$ est constante.

II.B.3) Montrer que les deux suites $(y_k)_{k\in\mathbb{N}}$ et $(z_k)_{k\in\mathbb{N}}$ forment une base de Sol(II.2) si et seulement si $W_0\neq 0$.

II.C – À toute suite complexe $(z_k)_{k\in\mathbb{N}}$, on associe la suite $(Z_k)_{k\in\mathbb{N}}$ d'éléments de \mathbb{C}^2 définie par

$$\forall k \in \mathbb{N}, \quad Z_k = \begin{pmatrix} z_k \\ z_{k+1} \end{pmatrix}$$

Démontrer que la suite $(z_k)_{k\in\mathbb{N}}$ est solution de (II.2) si et seulement si la suite $(Z_k)_{k\in\mathbb{N}}$ est solution d'un système (II.3) de la forme

$$\forall k \in \mathbb{N}, \quad Z_{k+1} = A_k Z_k \tag{II.3}$$

Préciser la matrice $A_k\in\mathcal{M}_2(\mathbb{C}).$

II.D – On note dorénavant $Q=A_{p-1}A_{p-2}\cdots A_0$. On se fixe dans cette sous-partie une solution $(Z_k)_{k\in\mathbb{N}}$ de (II.3).

II.D.1) Démontrer que $\det Q = 1$.

II.D.2) Démontrer que, pour tout entier naturel k et tout entier naturel $r \in [1, p-1]$,

$$\left\{ \begin{aligned} Z_{kp} &= Q^k Z_0 \\ Z_{kp+r} &= A_{r-1} A_{r-2} \cdots A_0 Q^k Z_0 \end{aligned} \right.$$

II.E –

II.E.1) Démontrer que (II.2) admet une solution périodique non nulle de période p si et seulement si 1 est une valeur propre de Q.

II.E.2) En déduire que (II.2) admet une solution périodique non nulle de période p si et seulement si tr(Q) = 2. Démontrer que dans ce cas, ou bien toutes les solutions de (II.2) sont périodiques de période p, ou bien (II.2) admet une solution non bornée.

On pourra démontrer qu'il existe une matrice $P\in \mathrm{GL}_2(\mathbb{C})$ et un nombre complexe α tels que $Q=Pigg(1 & \alpha \\ 0 & 1igg)P^{-1}$ et, dans le cas où $\alpha\neq 0$, considérer la suite de $\mathrm{Sol}(\mathrm{II}.2)$ dont l'image par Ψ est le vecteur $Pigg(0 \\ 1igg)$.

II.E.3) Montrer que si $|\operatorname{tr} Q| < 2$, alors toute solution de (II.2) est bornée.

III Généralisation

Soient n et p deux entiers supérieurs ou égaux à 2.

On se fixe dans toute cette partie une suite $(A_k)_{k\in\mathbb{N}}$ de matrices de $\mathrm{GL}_n(\mathbb{C})$ que l'on suppose p-périodique, c'est-à-dire telle que $\forall k\in\mathbb{N},\, A_{k+p}=A_k.$

On note Sol(III.1) l'ensemble des suites $(Y_k)_{k\in\mathbb{N}}$ de vecteurs de \mathbb{C}^n vérifiant la relation de récurrence

$$\forall k \in \mathbb{N}, \quad Y_{k+1} = A_k Y_k \tag{III.1}$$

 $\begin{aligned} & \textit{III.A} \quad \text{Justifier qu'on définit une suite } (\Phi_k)_{k \in \mathbb{N}} \text{ de matrices de } \mathrm{GL}_n(\mathbb{C}) \text{ en posant } \begin{cases} \Phi_0 = I_n \\ \Phi_{k+1} = A_k \Phi_k \end{cases} & \forall k \in \mathbb{N} \\ \text{et que } (Y_k)_{k \in \mathbb{N}} \in \mathrm{Sol}(\mathrm{III.1}) \text{ si et seulement si } \forall k \in \mathbb{N}, Y_k = \Phi_k Y_0. \end{aligned}$

III.B –

III.B.1) Démontrer que $\forall k \in \mathbb{N}, \ \Phi_{k+p} = \Phi_k \Phi_p$.

La matrice Φ_n est appelée matrice de Floquet de l'équation (III.1) et ses valeurs propres complexes sont appelées les multiplicateurs de Floquet de (III.1).

III.B.2) Soit ρ un multiplicateur de Floquet de (III.1).

- a) Démontrer qu'il existe une solution $(Y_k)_{k\in\mathbb{N}}$ de (III.1) non nulle vérifiant $\forall k\in\mathbb{N},\,Y_{k+p}=\rho Y_k$.
- b) Soit $(Y_k)_{k\in\mathbb{N}}$ une telle solution, démontrer que, si $|\rho| < 1$, $\lim_{k \to +\infty} ||Y_k||_{\infty} = 0$.

Dans toute la suite de cette partie III, on note B une matrice appartenant à $GL_n(\mathbb{C})$ et vérifiant $B^p = \Phi_n$ (l'existence d'une telle matrice sera démontrée dans la partie V).

III.C – Démontrer qu'il existe une unique suite $(P_k)_{k\in\mathbb{N}}\in (\mathrm{GL}_n(\mathbb{C}))^{\mathbb{N}}$, périodique de période p, telle que

$$\forall k \in \mathbb{N}, \quad \Phi_k = P_k B^k$$

III.D – Soit $(Y_k)_{k\in\mathbb{N}}$ une solution de (III.1).

III.D.1) Justifier l'existence de $M = \max_{k \in \mathbb{N}} \|P_k\|_0$. Montrer que pour tout $k \in \mathbb{N}$, $\|\Phi_k\|_0 \leqslant nM\|B^k\|_0$.

III.D.2)

- $a) \ \ \text{D\'emontrer que si} \ \lim_{k\to +\infty} \|B^k\|_0 = 0, \ \text{alors} \ \lim_{k\to +\infty} \|Y_k\|_\infty = 0.$ $b) \ \ \text{D\'emontrer que si la suite} \ \big(\|B^k\|_0\big)_{k\in \mathbb{N}} \ \text{est born\'ee, alors la suite} \ \big(\|Y_k\|_\infty\big)_{k\in \mathbb{N}} \ \text{est \'egalement born\'ee.}$
- III.E On suppose toujours que p est un entier supérieur ou égal à 2.
- III.E.1) Soit $R \in \mathbb{C}[X]$ un polynôme de degré supérieur ou égal à 1 à racines simples. Démontrer que le polynôme $R(X^p)$ est à racines simples si et seulement si $R(0) \neq 0$.
- III.E.2) En déduire que Φ_p est diagonalisable si et seulement si B est diagonalisable.
- III.E.3) On suppose que B est diagonalisable et que toutes ses valeurs propres sont de module strictement inférieur à 1. Démontrer que pour toute solution $(Y_k)_{k\in\mathbb{N}}$ de (III.1), $\lim_{k\to+\infty}\|Y_k\|_{\infty}=0$.

IV Le cas continu en dimension 2

Soient A une fonction continue, périodique de période T>0 et X une fonction de classe \mathcal{C}^1

$$A: \begin{vmatrix} \mathbb{R} \to \mathcal{M}_2(\mathbb{C}) \\ t \mapsto A(t) \end{vmatrix} X: \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

On s'intéresse au système différentiel homogène d'inconnue X

$$\forall t \in \mathbb{R}, \quad X'(t) = A(t)X(t)$$
 (IV.1)

On se fixe $t_0 \in \mathbb{R}$. On note $U : \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$ et $V : \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto \begin{pmatrix} v_1(t) \\ v_2(t) \end{pmatrix}$ les deux solutions du système différentiel (IV.1) vérifiant $U(t_0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $V(t_0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

IV.A -

IV.A.1) On considère le système différentiel linéaire (IV.2) dont les solutions sont des fonctions de classe \mathcal{C}^1 à valeurs dans $\mathcal{M}_2(\mathbb{C})$

$$\forall t \in \mathbb{R}, \quad M'(t) = A(t)M(t)$$
 (IV.2)

Pour tout $t \in \mathbb{R}$, on pose E(t) = [U(t), V(t)]. Vérifier que E est la solution de (IV.2) vérifiant $E(t_0) = I_2$.

 $\begin{aligned} \textbf{IV.A.2)} & \text{ Réciproquement, si } M: \begin{vmatrix} \mathbb{R} \to \mathcal{M}_2(\mathbb{C}) \\ t \mapsto [F(t), G(t)] \end{aligned} \text{ est une solution de (IV.2) et } W = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{C}^2, \text{ démontrer } \end{aligned}$ que la fonction $Y: \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto M(t)W = w_1F(t) + w_2G(t) \end{aligned}$ est une solution de (IV.1).

IV.B -

2017-04-13 15:08:28

IV.B.1) Soit $t_1 \in \mathbb{R}$ et $W = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{C}^2$. On suppose que $E(t_1)W = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Montrer que la fonction Y: $t\mapsto E(t)W=w_1U(t)+w_2V(t)$ est nulle. En déduire que pour tout réel $t,\,E(t)$ est inversible.

IV.B.2) Soit $M \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_2(\mathbb{C}))$ une solution du système (IV.2).

Montrer que pour tout réel t, $M(t) = E(t)M(t_0)$.

IV.B.3) Déduire de la question précédente qu'il existe une unique matrice $B \in GL_2(\mathbb{C})$ indépendante de t telle que pour tout réel t, E(t+T) = E(t)B.

B s'appelle la matrice de Floquet du système (IV.1) et les valeurs propres complexes de B s'appellent les multiplicateurs de Floquet de (IV.1).

IV.C –

IV.C.1) Soit $\rho \in \mathbb{C}$ un multiplicateur de Floquet de (IV.1), c'est-à-dire une valeur propre de B, et $Z \in \mathbb{C}^2$ un vecteur propre de B associé à cette valeur propre. On note $Y : \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto E(t)Z \end{vmatrix}$.

- a) Démontrer que $\forall t \in \mathbb{R},\, Y(t+T) = \rho Y(t).$
- b) Démontrer qu'il existe un nombre complexe μ et une fonction $S: \begin{vmatrix} \mathbb{R} \to \mathbb{C}^2 \\ t \mapsto S(t) \end{vmatrix}$ non nulle et T-périodique telle $\forall t \in \mathbb{R}, \ Y(t) = \mathrm{e}^{\mu t} S(t)$.
- IV.C.2) Donner une condition nécessaire et suffisante portant sur les multiplicateurs de Floquet pour que le système différentiel (IV.1) admette une solution non nulle périodique de période T.
- IV.C.3) On suppose que la matrice B est diagonalisable. Donner une condition nécessaire et suffisante portant sur les multiplicateurs de Floquet pour que le système différentiel (IV.1) admette une solution non bornée sur \mathbb{R} . IV.D – On pose pour tout $t \in \mathbb{R}$, $W(t) = \det(E(t))$ et on note ρ_1 et ρ_2 les multiplicateurs de Floquet de (IV.1).
- **IV.D.1)** Montrer que pour tout réel t, W'(t) = tr(A(t))W(t).

$$\mathbf{IV.D.2)} \ \text{En déduire que } \rho_1\rho_2 = \exp{\left(\int\limits_0^T \mathrm{tr}\big(A(s)\big)\,\mathrm{d}s\right)}.$$

V Racines p-ièmes dans $\mathrm{GL}_{n}(\mathbb{C})$

On se fixe un entier naturel p supérieur ou égal à 2. Pour toute matrice B de $\mathrm{GL}_n(\mathbb{C})$, on appelle racine p-ième de B toute matrice A de $\mathrm{GL}_n(\mathbb{C})$ vérifiant $A^p=B$. Le but de cette partie est de prouver l'existence d'une telle matrice.

On rappelle le résultat suivant relatif au produit de deux matrices triangulaires par blocs.

Pour toutes matrices A_1 et A_2 de $\mathcal{M}_n(\mathbb{C})$, toutes matrices X_1 et X_2 de $\mathcal{M}_{n,1}(\mathbb{C})$ et tous nombres complexes λ_1 et λ_2 :

$$\begin{pmatrix}A_1&X_1\\0_{1,n}&\lambda_1\end{pmatrix}\begin{pmatrix}A_2&X_2\\0_{1,n}&\lambda_2\end{pmatrix}=\begin{pmatrix}A_1A_2&A_1X_2+\lambda_2X_1\\0_{1,n}&\lambda_1\lambda_2\end{pmatrix}$$

 $\textit{\textbf{V.A}} \ - \ \ \text{Soient} \ A \in \mathcal{M}_n(\mathbb{C}), \, X \in \mathcal{M}_{n,1}(\mathbb{C}) \text{ et } \lambda \in \mathbb{C}.$

Démontrer que, pour tout entier $k\geqslant 1$ on a : $\begin{pmatrix} A & X \\ 0_{1,n} & \lambda \end{pmatrix}^k = \begin{pmatrix} A^k & X_k \\ 0_{1,n} & \lambda^k \end{pmatrix}$ où $X_k = \begin{pmatrix} \sum_{j=0}^{k-1} \lambda^{k-1-j} A^j \\ \sum_{j=0}^{k-1} \lambda^{k-1-j} A^j \end{pmatrix} X$.

 $\textbf{\textit{V.B}} - \text{On notera dans toute cette sous-partie } \mathcal{V}_p = \left\{ \mathrm{e}^{\frac{2\mathrm{i}k\pi}{p}}; k \in [\![1,p-1]\!] \right\}, \ \text{l'ensemble des racines p-ièmes de l'unité différentes de 1.}$

V.B.1) Soient a et λ des nombres complexes non nuls. On suppose que $\frac{a}{\lambda} \notin \mathcal{V}_p$, ce qui signifie que, soit $a = \lambda$, soit $\frac{a^p}{\lambda^p} \neq 1$. Démontrer que le nombre complexe $\sum_{j=0}^{p-1} \lambda^{p-1-j} a^j$ est non nul.

V.B.2) Soit $A=(a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ triangulaire supérieure et inversible. Soit λ un nombre complexe non nul. On suppose que, pour tout $i\in [\![1,n]\!], \frac{a_{i,i}}{\lambda}\notin\mathcal{V}_p$. Démontrer que la matrice $\sum_{j=0}^{p-1}\lambda^{p-1-j}A^j$ est inversible.

V.B.3) Montrer que toute matrice triangulaire supérieure et inversible admet au moins une racine p-ième triangulaire supérieure.

On pourra prouver par récurrence sur $n \geqslant 1$ la propriété suivante :

$$\forall B \in \mathcal{T}_n(\mathbb{C}) \cap \operatorname{GL}_n(\mathbb{C}), \quad \exists A \in \mathcal{T}_n(\mathbb{C}) \quad \text{telle que } \left\{ \begin{array}{l} A^p = B \\ \forall (i,j) \in [\![1,n]\!]^2, \frac{a_{i,i}}{a_{j,j}} \notin \mathcal{V}_p \end{array} \right.$$

V.B.4) Démontrer que toute matrice inversible de $\mathcal{M}_n(\mathbb{C})$ admet au moins une racine p-ième.

