

Mathématiques 1

PSI

2017

CONCOURS CENTRALE•SUPÉLEC 4 heures

Calculatrices autorisées

Grandes déviations

Toutes les variables aléatoires mentionnées dans ce sujet sont supposées discrètes.

La partie \mathbf{I} est composée de trois sous-parties mutuellement indépendantes \mathbf{A} , \mathbf{B} , \mathbf{C} , toutes trois utilisées dans la partie \mathbf{II} .

Notations et rappels

Soient X une variable aléatoire discrète réelle et $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles, mutuellement indépendantes, définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , suivant toutes la loi de X. On pose $S_0=0$ et, pour n dans \mathbb{N}^* ,

$$S_n = \sum_{k=1}^n X_k$$

Si Y est une variable aléatoire réelle admettant un moment d'ordre 1, on note E(Y) l'espérance de Y.

Si Y est une variable aléatoire réelle admettant un moment d'ordre 2, on note V(Y) la variance de Y.

Si Y est une variable aléatoire à valeurs dans \mathbb{R}^+ , on abrège « Y est d'espérance finie » en « $E(Y) < +\infty$ ».

Si τ est un élément de \mathbb{R}^{+*} , on dit que X vérifie (C_{τ}) si $E\left(\mathrm{e}^{\tau|X|}\right)<+\infty$.

On pourra utiliser la propriété suivante :

 (\mathcal{P}) pour Z et Y variables aléatoires réelles telles que $0 \leqslant Y \leqslant Z$, $E(Z) < +\infty \implies E(Y) < +\infty$

Étant données deux variables aléatoires Y et Z définies sur (Ω, \mathcal{A}, P) , on dit que Y est presque surement égale à Z lorsque P(Y = Z) = 1.

On admet le résultat suivant (lemme des coalitions) : soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes. Soient A et B deux sous-ensembles de \mathbb{N}^* disjoints. Alors toute variable aléatoire fonction des $Y_n, n\in A$ est indépendante de toute variable aléatoire fonction des $Y_n, n\in B$.

I Premiers résultats

I.A - Une classe de variables aléatoires

I.A.1) Soient U et V deux variables aléatoires sur (Ω, \mathcal{A}, P) possédant un moment d'ordre 2 et telles que V n'est pas presque surement nulle. Montrer que $E(U^2)E(V^2)-E(UV)^2\geqslant 0$ et que $E(U^2)E(V^2)-E(UV)^2=0$ si et seulement s'il existe $\lambda\in\mathbb{R}$ tel que $\lambda V+U$ est presque surement nulle.

I.A.2)

- a) On suppose que X est bornée. Justifier que X vérifie (C_{τ}) pour tout τ dans \mathbb{R}^{+*} .
- b) On suppose que X suit la loi géométrique de paramètre $p \in \]0,1[$

$$\forall k \in \mathbb{N}^*, \qquad P(X = k) = p(1 - p)^{k - 1}$$

Quels sont les réels t tels que $E(e^{tX}) < +\infty$? Pour ces t, donner une expression simple de $E(e^{tX})$.

c) On suppose que X suit la loi de Poisson de paramètre λ :

$$\forall k \in \mathbb{N}, \qquad P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{où } \lambda \in \mathbb{R}^{+*}$$

Quels sont les réels t tels que $E(e^{tX}) < +\infty$? Pour ces t, donner une expression simple de $E(e^{tX})$.

I.A.3) Soient a et b deux réels tels que a < b. On suppose $E(e^{aX}) < +\infty$ et $E(e^{bX}) < +\infty$.

a) Montrer $\forall t \in [a, b], e^{tX} \leq e^{aX} + e^{bX}$. En déduire $E(e^{tX}) < +\infty$.

Que peut-on en déduire sur l'ensemble $\{t \in \mathbb{R}; E(e^{tX}) < +\infty\}$?

b) Soient k dans \mathbb{N} , t dans a, b. On note $\theta_{k,t,a,b}$ la fonction $y \in \mathbb{R} \mapsto \frac{y^k e^{ty}}{e^{ay} + e^{by}}$.

Déterminer les limites de $\theta_{k,t,a,b}$ en $+\infty$ et $-\infty$. Montrer que cette fonction est bornée sur \mathbb{R} .

c) Montrer que $E(|X|^k e^{tX}) < +\infty$.

- d) On reprend les notations de la question b). Soient k dans \mathbb{N} , c et d deux réels tels que a < c < d < b. Montrer qu'il existe $M_{k,a,b,c,d} \in \mathbb{R}^+$ tel que pour tout $t \in [c,d]$ et pour tout $y \in \mathbb{R}$: $|\theta_{k,t,a,b}(y)| \leqslant M_{k,a,b,c,d}$.
- **I.A.4)** Dans cette question, τ est un élément de \mathbb{R}^{+*} et X vérifie (C_{τ}) .
- a) Montrer que l'ensemble des réels t tels que $E(e^{tX}) < +\infty$ est un intervalle I contenant $[-\tau, \tau]$. Pour t dans I, on note $\varphi_X(t) = E(e^{tX})$.
- b) Montrer que si $X(\Omega)$ est fini, φ_X est continue sur I et de classe C^{∞} sur l'intérieur de I.
- c) On suppose maintenant que $X(\Omega)$ est un ensemble infini dénombrable. On note $X(\Omega)=\{x_n;n\in\mathbb{N}^*\}$ où $(x_n)_{n\in\mathbb{N}^*}$ est une suite de réels deux à deux distincts et on pose pour tout $n\in\mathbb{N}^*$, $p_n=P(X=x_n)$.

En utilisant les résultats établis à la question I.A.3 et deux théorèmes relatifs aux séries de fonctions que l'on énoncera complètement, montrer que φ_X est continue sur I et de classe C^{∞} sur l'intérieur de I.

- d) Vérifier que pour t dans l'intérieur de I et k dans \mathbb{N} , $\varphi_X^{(k)}(t) = E(X^k e^{tX})$.
- e) Soit $\psi_X = \frac{\varphi_X'}{\varphi_X}$.

Montrer que ψ_X est croissante sur I et que, si X n'est pas presque surement égale à une constante, ψ_X est strictement croissante sur I.

I.B - Inégalité de Bienaymé-Tchebychev

On suppose que X admet un moment d'ordre 2.

I.B.1) Soit δ un élément de \mathbb{R}^{+*} . Montrer que, pour n dans \mathbb{N}^* ,

$$P(|S_n - nE(X)| \geqslant n\delta) \leqslant \frac{V(X)}{n\delta^2}$$

I.B.2) Si u et v sont deux nombres réels tels que u < E(X) < v, déterminer la limite de la suite $(\pi_n)_{n \in \mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \qquad \pi_n = P(nu \leqslant S_n \leqslant nv)$$

I.C - Suites sur-additives

Soit $(u_n)_{n\geqslant 0}$ une suite réelle telle que : $\forall (m,n)\in\mathbb{N}^2,\quad u_{m+n}\geqslant u_m+u_n.$

On suppose que l'ensemble $\left\{\frac{u_n}{n}, n \in \mathbb{N}^*\right\}$ est majoré et on note s sa borne supérieure.

- **I.C.1)** Soient m, q et r des éléments de \mathbb{N} . On pose n = mq + r. Comparer les deux nombres réels u_n et $qu_m + u_r$ et montrer que $u_n ns \geqslant q(u_m ms) + u_r rs$.
- **I.C.2)** On fixe m dans \mathbb{N}^* et ε dans \mathbb{R}^{+*} . En utilisant la division euclidienne de n par m, montrer qu'il existe un entier N tel que pour tout n > N,

$$\frac{u_n}{n}\geqslant \frac{u_m}{m}-\varepsilon$$

I.C.3) Montrer $\lim_{n\to\infty} \frac{u_n}{n} = s$.

II Le théorème des grandes déviations

Soit a un nombre réel.

2016-10-26 09:42:35

II.A - Exposant des grandes déviations

- **II.A.1)** Montrer $P(X \ge a) = 0 \iff \forall n \in \mathbb{N}^*, P(S_n \ge na) = 0.$
- **II.A.2)** Soient m et n dans \mathbb{N} .
- a) Montrer que $S_{m+n}-S_m$ et S_n ont même loi.
- b) Soit b un nombre réel. Montrer $P(S_{m+n}\geqslant (n+m)b)\geqslant P(S_n\geqslant nb)\,P(S_m\geqslant mb).$

On suppose dans toute la suite du problème $P(X \ge a) > 0$.

II.A.3) Montrer que la suite $\left(\frac{\ln(P(S_n \geqslant na))}{n}\right)_{n\geqslant 1}$ est bien définie et admet une limite γ_a négative ou nulle vérifiant

$$\forall n \in \mathbb{N}^*, \qquad P(S_n \geqslant na) \leqslant e^{n\gamma_a}$$

Dans toute la suite du problème, on suppose que X vérifie (C_{τ}) pour un certain $\tau > 0$ et n'est pas presque surement constante. On suppose également que a est strictement supérieur à E(X).

On se propose d'établir que $\gamma_a < 0$ (ce qui montre que la suite $(P(S_n \geqslant na))_{n\geqslant 1}$ converge géométriquement vers 0) puis de déterminer γ_a .

II.B - Majoration des grandes déviations

L'intervalle I et la fonction φ_X sont définis comme dans la question I.A.4.

II.B.1) Montrer que, pour n dans \mathbb{N}^* et t dans $I \cap \mathbb{R}^+$

$$E\left(\mathrm{e}^{tS_n}\right) = \left(\varphi_X(t)\right)^n, \qquad P(S_n \geqslant na) \leqslant \frac{\varphi_X(t)^n}{\mathrm{e}^{nta}}$$

II.B.2) On définit la fonction
$$\chi: \left| \begin{array}{l} I \to \mathbb{R} \\ t \mapsto \ln(\varphi_X(t)) - ta \end{array} \right|$$

a) Montrer que la fonction χ est minorée sur $I \cap \mathbb{R}^+$.

On note η_a la borne inférieure de χ sur $I \cap \mathbb{R}^+$.

- b) Donner un équivalent de $\chi(t)$ lorsque t tend vers 0. En déduire $\eta_a < 0.$
- c) Montrer $\forall n \in \mathbb{N}^*, \quad P(S_n \geqslant na) \leqslant e^{n\eta_a}.$

En déduire que $\gamma_a < 0$.

- d) Dans chacun des deux cas suivants, déterminer l'ensemble des nombres réels a vérifiant les conditions $P(X \ge a) > 0$ et a > E(X); puis, pour a vérifiant ces conditions, calculer η_a .
- i. X suit la loi de Bernoulli $\mathcal{B}(p)$ avec 0 .
- ii. X suit la loi de Poisson $\mathcal{P}(\lambda)$ avec $\lambda > 0$.

II.C - Le théorème de Cramer

On suppose ici que la borne inférieure η_a de la fonction χ sur $I \cap \mathbb{R}^+$ est atteinte en un point σ intérieur à $I \cap \mathbb{R}^+$.

Soient t un nombre réel intérieur à I et tel que $t > \sigma$, b un nombre réel tel que $b > \frac{\varphi_X'(t)}{\varphi_X(t)}$.

II.C.1)

$$a) \ \ \text{Calculer} \ \sum_{x \in X(\Omega)} \frac{\mathrm{e}^{tx}}{E(\mathrm{e}^{tX})} P(X=x).$$

On admet alors (quitte à modifier (Ω, \mathcal{A}, P))

— qu'il existe une variable aléatoire X' sur (Ω, \mathcal{A}) telle que $X'(\Omega) = X(\Omega)$ et dont la loi de probabilité est donnée par

$$\forall x \in X(\Omega), \quad P(X' = x) = \frac{\mathrm{e}^{tx}}{E(\mathrm{e}^{tX})} P(X = x)$$

- qu'il existe une suite $(X'_n)_{n\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes définies sur (Ω, \mathcal{A}, P) suivant toutes la même loi que X'.
- b) Montrer

$$E(X') = \frac{\varphi_X{}'(t)}{\varphi_X(t)}, \qquad E(X') > a$$

II.C.2) On admet que, si n dans \mathbb{N}^* et si f est une application de $X(\Omega)^n$ dans \mathbb{R}^+ , on a

$$E(f(X_1',...,X_n')) = \frac{E(f(X_1,...,X_n) e^{tS_n})}{\varphi_X(t)^n}$$

a) Pour n dans \mathbb{N}^* , on pose $S_n' = \sum_{k=1}^n X_k'$. Montrer $P(na \leqslant S_n' \leqslant nb) \leqslant P(S_n \geqslant na) \frac{\mathrm{e}^{ntb}}{\varphi_X(t)^n}$.

On pourra introduire l'application
$$f: \left| \begin{array}{ccc} X(\Omega)^n & \to & \mathbb{R} \\ \\ (x_1,...,x_n) & \mapsto & \begin{cases} 1 & \text{si } na \leqslant \sum_{i=1}^n x_i \leqslant nb \\ 0 & \text{sinon} \end{cases} \right|$$

b) En utilisant les questions I.B.2, II.B.2c et le a) ci-dessus, montrer finalement que $\eta_a = \gamma_a$.

II.C.3) Dans cette question on pourra utiliser les résultats du II.B.2d.

a) Soit α dans]0,1/2[. Pour n dans \mathbb{N}^* , on pose

$$A_n = \left\{k \in \{0,...,n\}, \; \left|k - \frac{n}{2}\right| \geqslant \alpha n \right\}, \qquad U_n = \sum_{k \in A_n} \binom{n}{k}$$

Déterminer la limite de la suite $\left(U_n^{1/n}\right)_{n\geqslant 1}.$

b) Soit λ dans $\mathbb{R}^{+*},\,\alpha$ dans $]\lambda,+\infty[.$ Pour n dans $\mathbb{N}^*,$ on pose

$$T_n = \sum_{\substack{k \in \mathbb{N} \\ k \geqslant \alpha n}} \frac{n^k \lambda^k}{k!}$$

Déterminer la limite de la suite $\left(T_n^{1/n}\right)_{n\geqslant 1}.$

 \bullet \bullet FIN \bullet \bullet

