

Mathématiques 1

2017 Calculatrices autorisées

CONCOURS CENTRALE SUPÉLEC

4 heures

Soit E un ensemble non vide.

On appelle partition de E tout ensemble $\mathcal{U} = \{A_1, ..., A_k\}$ de parties de E tel que

- chaque A_i , pour $i \in [1, k]$ est une partie non vide de E;
- − les parties $A_1,...,A_k$ sont deux à deux disjointes, c'est-à-dire que pour tous $i \neq j$ entre 1 et $k,A_i \cap A_j = \emptyset$;
- $-\;$ la réunion des A_i forme E tout entier : $E=\bigcup^n A_i.$

Si \mathcal{U} une partition de E et si k est le nombre d'éléments de \mathcal{U} , on dit aussi que \mathcal{U} une partition de E en k parties.

I Nombre de partitions en k parties

Soit k et n deux entiers strictement positifs. Montrer qu'il n'existe qu'un nombre fini de partitions de l'ensemble [1, n] en k parties.

Dans tout le problème, pour tout couple (n,k) d'entiers strictement positifs, on note S(n,k) le nombre de partitions de l'ensemble [1, n] en k parties.

On pose de plus S(0,0)=1 et, pour tout $(n,k)\in\mathbb{N}^{*2},$ S(n,0)=S(0,k)=0.

Exprimer S(n, k) en fonction de n ou de k dans les cas suivants :

- I.B.1) k > n:
- I.B.2) k=1.
- I.C -Montrer que pour tous k et n entiers strictement positifs, on a

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

On pourra distinguer les partitions de [1, n] selon qu'elles contiennent ou non le singleton $\{n\}$.

I.D -

Rédiger une fonction Python récursive permettant de calculer le nombre S(n,k), par application I.D.1) directe de la formule établie à la question I.C.

Montrer que, pour $n \ge 1$, le calcul de S(n,k) par cette fonction récursive nécessite au moins $\binom{n}{k}$ opérations (sommes ou produits).

II Nombres de Bell

Dans toute la suite, on pose pour tout entier $n \ge 0$,

$$B_n = \sum_{k=0}^n S(n,k)$$

II.A – Montrer que pour $n \ge 1$, B_n est égal au nombre total de partitions de l'ensemble [1, n].

II.B - Démontrer la formule

$$\forall n \in \mathbb{N}, \quad B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

 $\pmb{II.C}$ — Montrer que la suite $\left(\frac{B_n}{n!}\right)_{n\in\mathbb{N}}$ est majorée par 1.

H.D – En déduire une minoration du rayon de convergence R de la série entière $\sum_{n=1}^{\infty} \frac{B_n}{n!} z^n$.

Pour $x \in]-R, R[$, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} x^n.$

Montrer que pour tout $x \in]-R, R[, f'(x) = e^x f(x).$

En déduire une expression de la fonction f sur]-R,R[.

III Une suite de polynômes

On définit la suite de polynômes $(H_k)_{k\in\mathbb{N}}$ dans $\mathbb{R}[X]$ par $H_0(X)=1$ et, pour tout $k\in\mathbb{N}^*$,

$$H_k(X) = X(X-1) \cdots (X-k+1)$$

III.A – Montrer que la famille $(H_0,...,H_n)$ est une base de l'espace $\mathbb{R}_n[X]$.

III.B -

III.B.1) Pour tout $k \in \mathbb{N}$, établir une expression simplifiée de $H_{k+1}(X) + kH_k(X)$.

III.B.2) En déduire que, pour tout entier naturel n

$$X^n = \sum_{k=0}^n S(n,k) H_k(X)$$

III.C – Soit $k \in \mathbb{N}$.

III.C.1) Montrer que la fonction $f_k: x \mapsto \sum_{n=k}^{+\infty} S(n,k) \frac{x^n}{n!}$ est définie sur]-1,1[.

III.C.2) Pour $k \in \mathbb{N}$, on considère la fonction $g_k : x \mapsto \frac{(e^x - 1)^k}{k!}$.

Montrer que la fonction g_k vérifie l'équation différentielle

$$y' = \frac{(e^x - 1)^{k-1}}{(k-1)!} + ky$$

III.C.3) En déduire que pour tout $k \in \mathbb{N}$ et pour tout $x \in]-1,1[$,

$$\frac{(e^x - 1)^k}{k!} = \sum_{n=k}^{+\infty} S(n, k) \frac{x^n}{n!}$$

III.D -

III.D.1) Pour $x \in]-1,1[$ et $\alpha \in \mathbb{R},$ simplifier $\sum_{k=0}^{+\infty} H_k(\alpha) \frac{x^k}{k!}.$

III.D.2) Montrer que pour $u < \ln 2$

$$\mathrm{e}^{u\alpha} = \sum_{k=0}^{+\infty} H_k(\alpha) \frac{(\mathrm{e}^u - 1)^k}{k!}$$

IV Fonctions génératrices

On se donne dans la suite un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Soit m un entier strictement positif. On dit qu'une variable aléatoire $Y \colon \Omega \to \mathbb{N}$ admet un moment d'ordre m fini si Y admet une espérance finie, c'est-à-dire si la série $\sum n^m P(Y=n)$ converge. On appelle alors moment d'ordre m de Y le réel

$$\mathbb{E}(Y^m) = \sum_{n=0}^{\infty} n^m \mathbb{P}(Y=n)$$

IV.A – Montrer que si $Y: \Omega \to \mathbb{N}$ est une variable aléatoire associée à une fonction génératrice G_Y de rayon strictement supérieur à 1, alors Y admet à tout ordre un moment fini.

IV.B – Réciproquement, soit $Y:\Omega\to\mathbb{N}$ une variable aléatoire admettant à tout ordre un moment fini.

IV.B.1) Montrer que la fonction génératrice G_Y est de classe C^{∞} sur [-1,1].

IV.B.2) Exprimer $G_V^{(k)}(1)$ à l'aide des polynômes $H_k(X)$ et de la variable Y.

IV.B.3) La fonction génératrice G_Y a-t-elle nécessairement un rayon de convergence strictement supérieur à 1 ? On pourra utiliser la série entière $\sum e^{-\sqrt{n}}x^n$.

IV.C – On suppose dans cette question que Y suit la loi de Poisson de paramètre 1.

IV.C.1) Montrer que pour tout $n \in \mathbb{N}$, $B_n = \mathbb{E}(Y^n)$.

IV.C.2) En déduire que pour tout polynôme Q(X) à coefficients entiers, la série $\sum_{n=0}^{+\infty} \frac{Q(n)}{n!}$ est convergente et sa somme est de la forme Ne, où N est un entier.

V Somme de puissances

On fixe $n \in \mathbb{N}$. On pose l'application linéaire :

$$\begin{split} \Delta: \mathbb{R}[X] &\to \mathbb{R}[X] \\ P(X) &\mapsto P(X+1) - P(X) \end{split}$$

V.A – À l'aide d'un encadrement par des intégrales, déterminer un équivalent de $U_n(p) = \sum_{k=0}^p k^n$, à $n \ge 1$ fixé, lorsque p tend vers $+\infty$.

V.B – Soit Δ_n l'endomorphisme induit par Δ sur le sous-espace stable $\mathbb{R}_n[X]$. Déterminer la matrice A de Δ_n dans la base $(H_0,...,H_n)$.

$$\label{eq:V.C} \textit{V.C} - \quad \text{En déduire que } U_n(p) = \sum_{k=0}^n \frac{S(n,k)}{k+1} H_{k+1}(p+1).$$

$$\textbf{\textit{V.D}} - \text{On note } F = \big\{P \in \mathbb{R}_n[X] \mid P(0) = 0\big\}, \text{ puis } G = \mathrm{Vect}\big(X^{2k+1} \ ; \ 0 \leqslant k \leqslant n-1\big).$$

Soit Q(X) le polynôme tel que $\forall p \in \mathbb{N}, \ Q(p) = \sum_{k=0}^{p} k$.

V.D.1) Rappeler l'expression explicite du polynôme Q(X).

V.D.2) Montrer que l'application :

$$\begin{split} \Phi: F &\to G \\ P(X) &\mapsto \Delta \left(P(Q(X-1)) \right) \end{split}$$

est un isomorphisme.

V.D.3) En déduire que pour tout $r \in \mathbb{N}$, il existe un seul polynôme $P_r(X)$ tel que

$$\forall p \in \mathbb{N}, \quad \sum_{k=1}^p k^{2r+1} = P_r\left(\frac{p(p+1)}{2}\right)$$

V.E -

V.E.1) Déterminer le terme dominant dans $P_r(X)$.

V.E.2) Montrer que pour $r \ge 1$, X^2 divise $P_r(X)$.

V.E.3) Expliciter les polynômes $P_1(X)$ et $P_2(X)$.

 \bullet \bullet FIN \bullet \bullet

