SESSION 2017 PSIMA02

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES

Mardi 2 mai : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé de deux problèmes indépendants : un d'algèbre et un d'analyse.

PROBLÈME 1

Présentation générale

On se propose ici d'étudier certaines propriétés des matrices antisymétriques réelles. Après avoir étudié un exemple en dimension 2, on utilise les matrices antisymétriques pour paramétrer un sous-ensemble des matrices orthogonales.

Notations

- **R** désigne l'ensemble des réels et, pour tout entier n > 0, $\mathcal{M}_n(\mathbf{R})$ désigne l'ensemble des matrices $n \times n$ à coefficients réels. On note I_n la matrice identité de $\mathcal{M}_n(\mathbf{R})$.
- Pour tout entier n > 0, on désigne par $\mathcal{A}_n(\mathbf{R})$ l'ensemble des matrices $n \times n$ antisymétriques à coefficients réels et par $O_n(\mathbf{R})$ celui des matrices $n \times n$ orthogonales à coefficients réels. Le groupe *spécial orthogonal* est constitué des matrices orthogonales de déterminant 1.

Partie I - Un exemple en dimension 2

- **Q1.** Soit t un réel et soit $A = \begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix}$. Déterminer les valeurs propres complexes de A.
- **Q2.** Calculer $R = (I_2 + A)(I_2 A)^{-1}$ et montrer que R est une matrice du groupe spécial orthogonal.
- **Q3.** Pour tout réel $\theta \in \mathbf{R} \setminus \pi \mathbf{Z}$, on note $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculer $M = (I_2 + R_{\theta})^{-1}(I_2 R_{\theta})$.

Partie II - Matrices antisymétriques et matrices orthogonales

Dans ce qui suit, n désigne un entier strictement positif.

- **Q4.** Soient B et C deux matrices de $\mathcal{M}_n(\mathbf{R})$. Montrer que si C est inversible et BC = CB, alors $BC^{-1} = C^{-1}B$.
- **Q5.** Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice antisymétrique. Soit λ une valeur propre complexe de A et $X \in \mathbf{C}^n \setminus \{0\}$ un vecteur propre associé. En calculant de deux façons

$$^{t}(AX)\overline{X},$$

montrer que λ est un complexe imaginaire pur (éventuellement nul).

Q6. Déduire de la question précédente que si A est antisymétrique réelle, alors $I_n + A$ est inversible et :

$$(I_n - A)(I_n + A)^{-1} = (I_n + A)^{-1}(I_n - A).$$

Montrer que $R = (I_n + A)^{-1}(I_n - A)$ est une matrice orthogonale.

- **Q7.** Calculer le déterminant de *R*.
- **Q8.** Soit R une matrice orthogonale telle que $I_n + R$ soit inversible. Démontrer que la matrice $A = (I_n + R)^{-1}(I_n R)$ est antisymétrique.

Q9. On suppose ici que n = 3 et que \mathbb{R}^3 est muni de sa structure usuelle d'espace euclidien orienté par la base canonique. Soit r une rotation d'angle $\theta \in]-\pi,\pi[$ autour d'un axe orienté par un vecteur u de norme 1 et soit $R \in \mathcal{O}_3(\mathbb{R})$ sa matrice dans la base canonique.

Montrer qu'il existe une matrice antisymétrique $A \in \mathcal{M}_3(\mathbf{R})$ telle que :

$$R = (I_3 + A)^{-1}(I_3 - A).$$

PROBLÈME 2

Présentation générale

L'objet de ce problème est l'étude du phénomène de Gibbs. Dans la première partie, on démontre des lemmes de Riemann-Lebesgue. Dans la deuxième, on calcule l'intégrale de Dirichlet. Enfin, dans la troisième partie, on met en évidence le phénomène de Gibbs.

Notations

R désigne l'ensemble des réels, R⁺ désigne l'intervalle [0, +∞[et C désigne l'ensemble des nombres complexes.

Partie I - Résultats préliminaires

Dans ce qui suit, $\varphi: \mathbf{R} \to \mathbf{C}$ désigne une fonction continue 2π -périodique telle que :

$$\int_0^{2\pi} \varphi(t) \, dt = 0.$$

Q10. Si $f:[0,2\pi] \to \mathbb{C}$ est une fonction de classe \mathbb{C}^1 , montrer que :

$$\lim_{n \to +\infty} \int_0^{2\pi} f(t) \cos(nt) \ dt = 0.$$

Q11. Montrer que la primitive de φ s'annulant en 0 est 2π -périodique et bornée sur **R**.

Soient a et b deux réels tels que a < b, déduire de ce qui précède que pour toute fonction f de classe C^1 sur [a,b] et à valeurs dans C on a :

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \varphi(nt) dt = 0.$$

Q12. Soient α et β deux réels tels que $\alpha < \beta$ et $h : [\alpha, \beta] \to \mathbb{C}$ une fonction continue. Soient ε un réel strictement positif et g une fonction de classe C^1 sur $[\alpha, \beta]$ telle que $\sup_{[\alpha, \beta]} |h - g| \le \varepsilon$, montrer qu'il existe une constante M ne dépendant que de φ telle que :

$$\left| \int_{\alpha}^{\beta} h(t) \varphi(nt) dt \right| \leq M \left| \beta - \alpha \right| \varepsilon + \left| \int_{\alpha}^{\beta} g(t) \varphi(nt) dt \right|.$$

En déduire que pour tout intervalle [a, b] de **R** et toute fonction $f : [a, b] \to \mathbb{C}$ continue par morceaux :

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \varphi(nt) dt = 0.$$

On pourra admettre et utiliser le théorème de Weierstrass qui affirme que pour tout segment $[\alpha, \beta]$ avec $\alpha < \beta$ et toute fonction continue $f : [\alpha, \beta] \to \mathbb{C}$, il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions polynomiales qui converge uniformément vers f sur $[\alpha, \beta]$.

Q13. Soient a et b deux réels tels que a < b et $f : [a, b] \to \mathbb{C}$ une fonction continue par morceaux. Déduire de ce qui précède que :

$$\lim_{n\to+\infty}\int_a^b f(t)\sin^2{(nt)}\,dt = \frac{1}{2}\int_a^b f(t)\,dt.$$

Partie II - L'intégrale de Dirichlet

Soit $f: \mathbb{R}^+ \to \mathbb{C}$ une fonction continue telle que la fonction $F: x \mapsto \int_0^x f(t) dt$ soit bornée.

Q14. Montrer que, pour tout réel a > 0, les intégrales généralisées $\int_a^{+\infty} \frac{F(t)}{t^2} dt$ puis $\int_a^{+\infty} \frac{f(t)}{t} dt$ sont convergentes et que :

 $\int_{a}^{+\infty} \frac{f\left(t\right)}{t} dt = \int_{a}^{+\infty} \frac{F\left(t\right)}{t^{2}} dt - \frac{F\left(a\right)}{a}.$

Q15. Montrer que les intégrales généralisées $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ et $\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$ sont convergentes et que :

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt.$$

Dans ce qui suit, on considère une fonction continue $f: \mathbf{R}^+ \to \mathbf{C}$ telle que $\int_0^{+\infty} f(t) dt$ soit absolument convergente.

Q16. Montrer que la fonction

$$\mathcal{L}(f): x \in \mathbf{R}^+ \mapsto \int_0^{+\infty} f(t) e^{-xt} dt$$

est bien définie et continue sur \mathbf{R}^+ .

Q17. On suppose de plus que la fonction f est bornée. Montrer que la fonction $\mathcal{L}(f)$ est de classe C^{∞} sur $]0, +\infty[$ et que $\mathcal{L}(f)(x)$ tend vers 0 quand x tend vers $+\infty$.

Q18. Soit $f: t \in \mathbb{R}^+ \mapsto \frac{1}{1+t^2}$.

 ${\bf 1}$. Montrer que la fonction $\mathcal{L}(f)$ est solution de l'équation différentielle

$$y'' + y = \frac{1}{x} \tag{E}$$

sur $]0, +\infty[$.

2. On cherche une solution particulière de (E) de la forme $x \mapsto \alpha(x)\cos(x) + \beta(x)\sin(x)$ où les fonctions α et β sont de classe C^2 et vérifient :

$$\forall x \in]0, +\infty[\quad \alpha'(x)\cos(x) + \beta'(x)\sin(x) = 0.$$

Montrer que l'on peut prendre $\alpha(x) = \int_x^{+\infty} f_1(t) dt$ et $\beta(x) = \int_x^{+\infty} f_2(t) dt$ où f_1 et f_2 sont des fonctions que l'on déterminera.

- **3.** En déduire que $\int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ est une solution de l'équation (**E**) sur $]0, +\infty[$.
- **4.** Montrer qu'il existe $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall x \in]0, +\infty[\quad \mathcal{L}(f)(x) = a\cos x + b\sin x + \int_0^{+\infty} \frac{\sin(t)}{x+t} dt.$$

Q19. Montrer que $\int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ tend vers 0 quand x tend vers $+\infty$ et en déduire que pour tout x > 0 on a :

$$\mathcal{L}(f)(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} dt.$$

Q20. Montrer que $\int_{1}^{+\infty} \left(\frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} \right) dt$ tend vers 0 quand x tend vers 0⁺. En déduire que :

$$\lim_{x \to 0^+} \int_0^{+\infty} \frac{\sin(t)}{x+t} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Q21. Déduire des questions précédentes que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Partie III - Phénomène de Gibbs

Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π -périodique et impaire définie par :

$$f(x) = \begin{cases} 1 & \text{si} & x \in]0, \pi[\\ 0 & \text{si} & x = 0 \text{ ou } x = \pi \end{cases} .$$
 (E.1)

On désigne par $(S_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ S_n(x) = \frac{4}{\pi} \sum_{k=0}^n \frac{\sin((2k+1)x)}{2k+1}.$$

Q22. En calculant la dérivée de S_n , montrer que :

$$\forall n \in \mathbb{N}, \ \forall x \in [0, \pi], \ S_n(x) = \frac{2}{\pi} \int_0^x \frac{\sin(2(n+1)t)}{\sin(t)} dt.$$

Q23. Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\frac{\pi}{4} - \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = (-1)^{n+1} \int_0^1 \frac{t^{2n+2}}{1+t^2} dt.$$

En déduire la valeur de $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}.$

Q24. En déduire que $S_n\left(\frac{\pi}{2}\right)$ tend vers 1 quand n tend vers l'infini.

Q25. Calculer $S_n(\pi - x)$ en fonction de $S_n(x)$. En utilisant le résultat de la **question Q12**, montrer que, pour tout $x \in]0, \pi/2]$, on a :

$$\lim_{n\to\infty} S_n(x) = 1.$$

Q26. Déduire de ce qui précède que la suite $(S_n)_{n \in \mathbb{N}}$ converge simplement vers la fonction f définie par (E.1) sur \mathbb{R} .

Q27. Montrer que la suite de fonctions $(\varphi_n)_{n\geq 1}$ définie sur $[0,\pi]$ par

$$\varphi_n(x) = \begin{cases} \frac{1}{2n} \frac{\sin(x)}{\sin(\frac{x}{2n})} & \text{si} \quad x \in]0, \pi] \\ 1 & \text{si} \quad x = 0 \end{cases}$$

converge simplement sur $[0,\pi]$ vers la fonction φ définie sur $[0,\pi]$ par :

$$\varphi(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \in]0, \pi] \\ 1 & \text{si } x = 0 \end{cases}.$$

Q28. Montrer que φ est continue sur $[0, \pi/2]$ et en déduire que

$$\lim_{n \to +\infty} S_n \left(\frac{\pi}{2(n+1)} \right) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(x)}{x} dx$$

puis que:

$$\lim_{n \to +\infty} \left(f\left(\frac{\pi}{2(n+1)}\right) - S_n\left(\frac{\pi}{2(n+1)}\right) \right) = \frac{2}{\pi} \int_{\pi}^{+\infty} \frac{\sin(x)}{x} dx.$$

Q29. Montrer que

$$\int_0^{\pi} \frac{\sin(x)}{x} dx = \sum_{n=0}^{+\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)(2n+1)!}$$

puis que:

$$\lim_{n \to +\infty} \left(S_n \left(\frac{\pi}{2(n+1)} \right) - f \left(\frac{\pi}{2(n+1)} \right) \right) = 2 \sum_{n=0}^{+\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} - 1.$$

Q30. Comparer

$$\sum_{n=0}^{+\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} \quad \text{et} \quad \sum_{n=0}^{3} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!},$$

et montrer que :

$$\lim_{n \to +\infty} \left(S_n \left(\frac{\pi}{2(n+1)} \right) - f \left(\frac{\pi}{2(n+1)} \right) \right) > 0.17.$$

En déduire que la suite de fonctions $(S_n)_{n \in \mathbb{N}}$ ne converge pas uniformément vers f sur $]0, \pi/2[$.

FIN

