

Mathématiques 1

PSI C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Dans tout ce problème, n est un entier supérieur ou égal à 2 et l'on note :

- $-\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels ;
- GL_n(\mathbb{R}) l'ensemble des éléments inversibles de $\mathcal{M}_n(\mathbb{R})$;
- $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales d'ordre n;
- $-~\mathcal{X}_n$ l'ensemble des éléments de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont dans $\{0,1\}$;
- $-\ \mathcal{Y}_n$ l'ensemble des éléments de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont dans [0,1] ;
- $-\mathcal{P}_n$ l'ensemble des éléments de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont dans $\{0,1\}$ et ne contenant qu'un seul coefficient non nul par ligne et par colonne ;
- $-\ ^t\!M$ la transposée d'une matrice M, mais la notation M^T est également utilisable.

Par exemple:

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{X}_3 \qquad \qquad \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ \exp(-1) & \frac{3}{4} \end{pmatrix} \in \mathcal{Y}_2 \qquad \qquad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{P}_3$$

Ce problème aborde l'étude de matrices à coefficients dans $\{0,1\}$ à travers plusieurs thématiques indépendantes les unes des autres. Les deux premières parties étudient quelques propriétés algébriques et topologiques des ensembles \mathcal{X}_n et \mathcal{Y}_n définis ci-dessus. La partie III étudie le cas particulier des matrices de permutation. La partie IV étudie deux modalités de génération aléatoire de matrices à coefficients dans $\{0,1\}$.

I Généralités

I.A - Propriétés élémentaires

- **I.A.1)** Justifier que \mathcal{X}_n est un ensemble fini et déterminer son cardinal.
- **I.A.2)** Démontrer que pour tout $M \in \mathcal{Y}_n$, $\det(M) \leq n!$ et qu'il n'y a pas égalité.
- **I.A.3)** Démontrer que \mathcal{Y}_n est une partie convexe et compacte de $\mathcal{M}_n(\mathbb{R})$.
- **I.A.4)** Soit $M \in \mathcal{Y}_n$ et λ une valeur propre complexe de M. Démontrer que $|\lambda| \leq n$ et donner un exemple explicite où l'on a l'égalité.
- I.B Étude de $\mathcal{X}'_n = \mathcal{X}_n \cap GL_n(\mathbb{R})$
- **I.B.1)** Faire la liste des éléments de \mathcal{X}'_2 . Préciser (en justifiant) ceux qui sont diagonalisables sur \mathbb{R} .
- **I.B.2)** Démontrer que \mathcal{X}_2' engendre l'espace vectoriel \mathcal{M}_2 . Est-ce que, pour $n \geq 2$, \mathcal{X}_n' engendre l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$?

II Deux problèmes d'optimisation

II.A - Étude de la distance à \mathcal{Y}_n

Pour tout $(M,N) \in (\mathcal{M}_n(\mathbb{R}))^2$, on note

$$(M|N) = \operatorname{tr}({}^{t}MN)$$

II.A.1) Démontrer que l'on définit ainsi un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Expliciter (M|N) en fonction des coefficients de M et N.

On notera ||M|| la norme euclidienne associée.

II.A.2) On fixe $A \in \mathcal{M}_n(\mathbb{R})$, prouver qu'il existe une matrice $M \in \mathcal{Y}_n$ telle que :

$$\forall N \in \mathcal{Y}_n \quad \|A - M\| \leqslant \|A - N\|$$

- II.A.3) Justifier l'unicité de la matrice M ci-dessus et expliciter ses coefficients en fonction de ceux de A.
- $\textbf{\textit{II.B}} \textbf{\textit{Maximisation du déterminant sur }} \mathcal{X}_n \text{ et } \mathcal{Y}_n$
- **II.B.1)** Justifier que le déterminant possède un maximum sur \mathcal{X}_n (noté x_n) et un maximum sur \mathcal{Y}_n (noté y_n).

- **II.B.2)** Démontrer que la suite $(y_k)_{k\geqslant 2}$ est croissante.
- **II.B.3)** Soit $J \in \mathcal{X}_n$ la matrice dont tous les coefficients valent 1. On pose $M = J I_n$.

Calculer $\det(M)$ et en déduire que $\lim_{k \to +\infty} y_k = +\infty$.

II.B.4) Soient $N = (n_{i,j})_{i,j} \in \mathcal{Y}_n$. Fixons $1 \le i, j \le n$ et supposons que $n_{i,j} \in]0,1[$.

Démontrer qu'en remplaçant $n_{i,j}$ soit par 0, soit par 1, on peut obtenir une matrice N' de \mathcal{Y}_n telle que $\det(N) \leqslant \det(N')$.

En déduire que $x_n = y_n$.

III Matrices de permutations

On munit \mathbb{R}^n de sa structure euclidienne canonique et on note $(e_1,...,e_n)$ sa base canonique.

On note S_n l'ensemble des bijections de l'ensemble $\{1,...,n\}$ dans lui-même (appelées permutations).

Pour tout $\sigma \in S_n$, on note P_{σ} la matrice de \mathcal{P}_n dont le coefficient ligne i, colonne j vaut 1 si $i = \sigma(j)$ et 0 sinon. On dit que P_{σ} est la matrice de permutation associée à σ .

On note u_{σ} l'endomorphisme de \mathbb{R}^n canoniquement associé à P_{σ} .

III.A - Description de \mathcal{P}_n

- III.A.1) Donner deux définitions d'une isométrie vectorielle de \mathbb{R}^n et démontrer leur équivalence.
- III.A.2) Démontrer que si $M \in \mathcal{O}_n(\mathbb{R})$, alors son déterminant vaut 1 ou -1. Que penser de la réciproque ?
- III.A.3) Démontrer que $\mathcal{P}_n = \mathcal{X}_n \cap \mathcal{O}_n(\mathbb{R})$ et déterminer son cardinal.

III.B – Quelques propriétés des éléments de \mathcal{P}_n

III.B.1) Soient σ et σ' deux éléments de S_n .

Démontrer que $P_{\sigma}P_{\sigma'}=P_{\sigma\circ\sigma'}$.

Justifier que l'application $\begin{cases} \mathbb{Z} \to S_n \\ k \mapsto \sigma^k \end{cases}$ n'est pas injective.

En déduire qu'il existe un entier $N\geqslant 1$ tel que $\sigma^N=\mathrm{Id}_{\{1,\dots,n\}},$ où $\mathrm{Id}_{\{1,\dots,n\}}$ désigne l'application identité sur l'ensemble $\{1,\dots,n\}.$

- III.B.2) Démontrer que tous les éléments de \mathcal{P}_n sont diagonalisables sur \mathbb{C} .
- III.B.3) Déterminer les vecteurs propres communs à tous les éléments de \mathcal{P}_n dans les cas n=2 et n=3.
- III.B.4) On se propose de démontrer que les seuls sous-espaces vectoriels de \mathbb{R}^n stables par tous les u_{σ} , $\sigma \in S_n$ sont $\{0_{\mathbb{R}^n}\}$, \mathbb{R}^n , la droite D engendrée par $e_1 + e_2 + \cdots + e_n$ et l'hyperplan H orthogonal à D.
- a) Vérifier que ces quatre sous-espaces vectoriels sont stables par tous les u_{σ} .
- b) Soit V un sous-espace vectoriel de \mathbb{R}^n , non contenu dans D et stable par tous les u_σ . Démontrer qu'il existe un couple $(i,j) \in \{1,...,n\}^2$ avec $i \neq j$ tel que $e_i e_j \in V$, puis que les n-1 vecteurs $e_k e_j$ $(k \in \{1,...,n\}, k \neq j)$ appartiennent à V.
- c) Conclure.

III.C – Une caractérisation des éléments de \mathcal{P}_n

On se donne une matrice M de $\mathrm{GL}_n(\mathbb{R})$ dont tous les coefficients sont des entiers naturels et telle que l'ensemble formé par tous les coefficients de toutes les puissances successives de M est fini.

Démontrer que M^{-1} est à coefficients dans $\mathbb N$ et en déduire que M est une matrice de permutation. Que dire de la réciproque ?

IV Matrices aléatoires de \mathcal{X}_n

IV.A - Génération par une colonne aléatoire

Soit $p \in]0,1[$. Soient $X_1,...,X_n$ des variables aléatoires mutuellement indépendantes, définies sur un espace probabilisé (Ω,\mathcal{A},P) et suivant une même loi de Bernoulli de paramètre p.

- IV.A.1) Calculer la probabilité que $X_1, ..., X_n$ soient égales.
- IV.A.2) Quelle est la loi de $S = X_1 + ... + X_n$? On attend une démonstration du résultat annoncé.
- **IV.A.3)** Soient i et j dans $\{1,...,n\}$. Donner la loi de la variable aléatoire $X_{i,j} = X_i \times X_j$

IV.A.4) Si $\omega \in \Omega$, on introduit la matrice colonne

$$U(\omega) = \begin{pmatrix} X_1(\omega) \\ \vdots \\ X_n(\omega) \end{pmatrix}$$

et la matrice $M(\omega) = U(\omega)^t(U(\omega))$. L'application $M: \begin{cases} \Omega \to \mathcal{M}_n(\mathbb{R}) \\ \omega \mapsto M(\omega) \end{cases}$ est ainsi une variable aléatoire.

- a) Si $\omega \in \Omega$, justifier que $M(\omega) \in \mathcal{X}_n$.
- b) Si $\omega \in \Omega$, justifier que $\operatorname{tr}(M(\omega)) \in \{0,...,n\}$, que $M(\omega)$ est diagonalisable sur \mathbb{R} et que $\operatorname{rg}(M(\omega)) \leq 1$.
- c) Si $\omega \in \Omega$, justifier que $M(\omega)$ est une matrice de projection orthogonale si et seulement si $S(\omega) \in \{0,1\}$.
- **IV.A.5)** Donner la loi, l'espérance et la variance des variables aléatoires tr(M) et rg(M).
- **IV.A.6)** Exprimer M^k en fonction de S et M.

Quelle est la probabilité pour que la suite de matrices $(M^k)_{k\in\mathbb{N}}$ soit convergente ?

Montrer que, dans ce cas, la limite est une matrice de projection.

IV.A.7) Quelle est la probabilité que M admette deux valeurs propres distinctes?

IV.B - Génération par remplissage aléatoire

Soit $p \in]0,1[$. On part de la matrice nulle de $\mathcal{M}_n(\mathbb{R})$, notée M_0 . Pour tout $k \in \mathbb{N}$, on construit la matrice M_{k+1} à partir de la matrice M_k de la manière suivante

- $-\,$ on parcourt en une vague la matrice et chaque coefficient nul est changé en 1 avec la probabilité p ;
- chaque action sur un coefficient est indépendante de ce qui se passe sur les autres et des vagues précédentes.

Les M_k sont donc des variables aléatoires à valeurs dans \mathcal{X}_n et l'on considère qu'elles sont définies sur un espace probabilisé commun (Ω, \mathcal{A}, P) . Voici un exemple de réalisation de cette évolution pour n=2

$$M_0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \rightarrow M_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \rightarrow M_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow M_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow M_5 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Pour $k\geqslant 1$, le nombre de modifications réalisées lors de la k-ième vague est noté N_k . Dans l'exemple ci-dessus : $N_1=2,~N_2=0,~N_3=1,~N_4=1,~N_5=0.$

On s'intéresse au plus petit indice k pour lequel la matrice M_k ne comporte que des 1 ; on dit alors qu'elle est totalement remplie. Dans l'exemple précédent, ce premier indice vaut 4.

On note q = 1 - p et $m = n^2$.

- **IV.B.1)** Dans toute cette question on utilise le langage Python. M désigne une matrice carrée d'ordre n. Ses lignes et ses colonnes sont numérotées de 0 à n-1. L'expression M[i,j] permet d'accéder à l'élément situé à l'intersection de la ligne i et de la colonne j et len(M) donne l'ordre de la matrice M.
- a) Écrire une fonction Somme (M) qui renvoie la somme des coefficients de la matrice M.
- b) Écrire une fonction Bernoulli(p) qui renvoie 1 avec la probabilité p et 0 avec la probabilité 1-p. On pourra utiliser l'expression random() qui renvoie un réel de l'intervalle [0,1] selon la loi uniforme.
- c) À l'aide de la fonction Bernoulli(p), écrire une fonction Modifie(M,p) qui modifie aléatoirement la matrice M suivant le principe décrit au IV.B ci-dessus.
- d) Écrire une fonction Simulation(n,p) qui renvoie le plus petit entier k tel que M_k est totalement remplie à partir d'un remplissage aléatoire de la matrice nulle d'ordre n (qui peut être obtenue par zeros((n,n))). Il n'est pas demandé de mémoriser les M_k .
- **IV.B.2)** Donner la loi de N_1 , puis la loi conditionnelle de N_2 sachant $(N_1 = i)$ pour i dans un ensemble à préciser. N_1 et N_2 sont-elles indépendantes ?
- **IV.B.3)** Soient i et j dans $\{1,...,n\}$. Le plus petit entier $k \ge 1$ tel que le coefficient ligne i, colonne j de M_k vaut 1 est noté $T_{i,j}$ (dans l'exemple ci-dessus : $T_{1,1} = 1$ et $T_{1,2} = 3$). Donner la loi de $T_{i,j}$.
- **IV.B.4)** Pour un entier $k \ge 1$, donner la valeur de $P(T_{i,j} \ge k)$
- **IV.B.5)** Soient $r \ge 1$ un entier et $S_r = N_1 + \dots + N_r$. Que représente S_r ? Donner sa loi (on pourra utiliser la question précédente).
- IV.B.6) On note N le plus petit indice k pour lequel la matrice M_k est totalement remplie.
- a) Proposer une démarche pour approcher l'espérance de N à l'aide d'une simulation informatique utilisant les fonctions précédentes.
- b) Donner une expression de la valeur exacte de cette espérance faisant intervenir q et m.

